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ABSTRACT: The design and development of efficient and
electrocatalytic sensitive nickel oxide nanomaterials have attracted
attention as they are considered cost-effective, stable, and
abundant electrocatalytic sensors. However, although innumerable
electrocatalysts have been reported, their large-scale production
with the same activity and sensitivity remains challenging. In this
study, we report a simple protocol for the gram-scale synthesis of
uniform NiO nanoflowers (approximately 1.75 g) via a hydro-
thermal method for highly selective and sensitive electrocatalytic detection of hydrazine. The resultant material was characterized by
scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For the production of the modified
electrode, NiO nanoflowers were dispersed in Nafion and drop-cast onto the surface of a glassy carbon electrode (NiO NF/GCE).
By cyclic voltammetry, it was possible to observe the excellent performance of the modified electrode toward hydrazine oxidation in
alkaline media, providing an oxidation overpotential of only +0.08 V vs Ag/AgCl. In these conditions, the peak current response
increased linearly with hydrazine concentration ranging from 0.99 to 98.13 μmol L−1. The electrocatalytic sensor showed a high
sensitivity value of 0.10866 μA L μmol−1. The limits of detection and quantification were 0.026 and 0.0898 μmol L−1, respectively.
Considering these results, NiO nanoflowers can be regarded as promising surfaces for the electrochemical determination of
hydrazine, providing interesting features to explore in the electrocatalytic sensor field.

■ INTRODUCTION
Electrocatalytic nanomaterials have been a topic of research in
the frontiers of electrochemistry, which includes their
utilization in advanced applications, such as oxidation of
environmental pollutants, non-enzymatic determination of
organic compounds, and efficient design of fuel cells,
supercapacitors, and batteries, among others.1−9 Mainly,
nanostructured metal oxides based on copper, nickel, and
zinc are efficient electrocatalysts when considering non-noble
precursors;10−12 thus, materials based on these oxides are
highly studied. Also, although some oxides find specific
utilization, many applications are mutual.13 Therefore, with
the emergence of nanotechnology, the performance of metal
oxides is not exclusively based on their chemical nature;
instead, their properties can be tuned by controlling several
parameters, including size, shape (surface facets), composition,
and structure.14−18 From this perspective, producing nano-
cavities over materials or obtaining nanocubes, nanowires,
nanorods, nanosheets, and nanoflower-based metal oxides can
provide advanced surface features for creating electrocatalytic
sensors.12,19−22 Among the different morphologies cited
before, nanoflowers showing structural similarity to real flowers
have attracted increased interest nowadays since they are

composed of several thin layers of petals forming a highly
porous structure encompassing a larger surface area and highly
active surface sites for multiple applications in catalysis,
sensors, and delivery of drugs.23−26

In light of the foregoing, metal oxide utilization reaches a
new level once fine manipulations highly affect their perform-
ance, which sometimes makes it difficult to choose a potential
candidate for a specific application. However, some consid-
erations regarding the previous literature may help in its task.
Thus, nickel oxide (NiO) nanostructured electrocatalysts are
especially attractive due to their high activity, sensitivity,
precursors’ abundance, and lower cost when compared to
noble-metal electrocatalytic sensors.13 Also, from a physico-
chemical perspective, NiO presents other features that make it
suitable for consideration regarding sensing applications: (1)
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ease of obtaining several morphologies, which, generally,
affords high surface area and porosity, improving their
results;27−34 (2) tunable electrical conductivity by controlling
microstructural defects such as vacancies and interstitials;35 (3)
high electrochemical and structural stability of nickel and
nickel-based mixed oxides36,37 and; (4) preparation of stable
NiO with just one phase, improving the fast transfer of
electrons between Ni2+ and Ni+ species when required.38 Such
features make NiO nanomaterials highly promising for
applications in supercapacitors,39 renewable energy,40 and
non-enzymatic glucose sensing.41 For electrochemical sensors,
modified Ni, NiO, and Ni(OH)2 electrodes commonly provide
a well-known redox peak in basic media, which can be related
to the oxyhydroxide NiOOH species.42 In these conditions,
nickel oxide can be explored for the catalytic oxidation of many
molecules, including glucose and hydrazine.43 The main focus
is to reduce the redox overpotential, enabling the production of
selective and sensitive electrocatalytic sensors. However,
despite several successful attempts to synthesize NiO nano-
flowers, most reported protocols are usually restricted by the
low amounts of produced materials (limited to milligrams) or
do not display uniform sizes and shapes.44−47 In particular,
anisotropic NiO nanomaterials have attracted significant
attention in catalysis, sensor, and plasmonics48 for the
following reasons: (i) higher specific surface areas relative to
those of commercial samples, (ii) crystal growth along high
index facet and high surface energy, leading to highly
catalytically active crystallographic directions, (iii) easily
accessible surface by gas and liquid substrates due to their
porous structures, and (iv) diminished sintering processes,
which generally are responsible for significant decreases in the
surface area of several catalysts and can be significantly
retarded in anisotropic nanomaterials as compared to other
shapes. Thus, obtaining high quantities of such materials in a
controlled shape is highly interesting.
Undeniably, electrocatalytic oxidation of hydrazine (N2H4)

is an interesting research topic with technological use in
alternative energy production and high-performance sensor
devices.41,49 Hydrazine is a key inorganic compound mainly
used in the chemical industry with undisputable properties as a
catalyst, reducing, and foaming agent. It is also used as an
intermediate of synthetic routes to produce pesticides,
polymers, and pharmaceuticals.50−52 This compound has
triggered technological inventions such as rocket fuels and
car airbags because of its propellant properties.33 Despite its
excellent features, hydrazine is carcinogenic, and high
exposition levels can lead to several adverse effects on
human health.53,54 Aware of this harmful characteristic of
hydrazine, some oxides have been proposed to promote the
catalytic oxidation of this compound, with an emphasis on
NiO. While many works have focused on investigating mixed
nickel oxide materials to improve sensor performance (AuNPs-
NiO, MWCNT-NiO, and NiO/CuO),55−57 only a few have
explored their shape-dependent intrinsic properties.
Here, we provide the simple and fast one-step gram-scale

synthesis of hierarchically structured nickel oxide nanoflowers
(NiO NF) for electrochemical sensing of hydrazine. The
produced NiO NF was characterized by different techniques,
including scanning electron microscopy (SEM), high-reso-
lution transmission electron microscopy (HRTEM), X-ray
diffraction (XRD), and X-ray photoelectron microscopy
(XPS). The resultant material was dispersed in Nafion and
employed to produce a modified glassy carbon electrode (NiO

NF/GCE). Cyclic voltammetry in alkaline media was used to
investigate the electrochemical performance of NiO NF toward
hydrazine oxidation to develop a highly sensitive and selective
electrocatalytic sensor.

■ EXPERIMENTAL SECTION
Materials and Instrumentation. Analytical-grade nickel-

(II) chloride hexahydrate (NiCl2·6H2O, ≥ 98%), sodium
dodecyl sulfonate (SDS, ≥ 99%), urea (≥ 99.5%), potassium
hydroxide (90%), and hydrazine sulfate (≥ 99%) were
purchased from Sigma-Aldrich and used without further
purification. The solutions were prepared with deionized
water (resistivity of 18.2 MΩ cm, Millipore , Billerica, USA).
SEM images were acquired in a JEOL field emission gun

microscope JSM 6330F (JEOL, Tokyo, Japan), operated at 5
kV. The HRTEM images were obtained with a JEOL JEM
2100 microscope (JEOL, Tokyo, Japan) operated at 200 kV.
For sample preparation, 0.01 g of the material was dispersed in
10 mL of deionized water and sonicated with an ultrasonic
bath to suspend the material in the solvent. Then, the aqueous
suspension containing the nanostructures was drop-cast over a
silicon wafer (for SEM analysis) or a carbon-coated copper
grid (for HRTEM analysis), followed by drying under ambient
conditions.
XPS analyses were performed with a K-Alpha X-ray

photoelectron spectrometer system. The calibration used the
C 1s peak (BE = 284.8 eV). CasaXPS processing software
version 2.3.15 (Casa Software Ltd., Teignmouth, UK) was
used for data analysis. XRD analyses were performed using a
Bruker D8 Advance diffractometer. The scans were recorded in
the 2θ range between 10 and 85°. The phase composition was
determined by Rietveld refinement using GSAS-II software.
Textural characteristics for the catalysts were determined from
nitrogen adsorption isotherms, recorded at −196 °C in a
Micromeritics (Norcross, GA) Gemini III 2375 surface area
analyzer. The samples (ca. 100 mg) were degassed for 3 h at
150 °C before analysis. The BET method determined specific
surface areas from the adsorption isotherm generated in a
relative pressure range of 0.07 < P/Po < 0.3.

Gram-Scale Synthesis of NiO Nanoflowers. The gram-
scale synthesis of NiO nanoflowers was performed by a
hydrothermal method in a batch-stirred high-pressure reactor
system (Berghof BR-500, Eningen unter Achalm, Germany)
with a 500 mL PTFE-lined vessel employed. In a typical
experiment, two solutions were first prepared: (1) 150 mL of
an aqueous solution of SDS (4.33 g) and (2) 150 mL (75 mL
of water and 75 mL of ethanol) of NiCl2·6H2O (7.13 g) and
urea (9.0 g). Then, solution (1) was dropwise added to
solution (2) and stirred for 30 min at room temperature before
transfer to a 500 mL Berghof BR-500, which was kept at 120
°C for 12 h. The resultant solid was washed with deionized
water and ethanol several times and dried at 60 °C under
atmosphere conditions for 10 h. Lastly, the product was
calcined at 350 °C for 2 h under air atmosphere. The material
was designated as NiO nanoflowers. The complete production
of NiO nanoflowers is summarized in Scheme 1.

Electrochemical Measurements. The measurements
were performed using an Autolab PGSTAT302N potentiostat
(Metrohm, Netherlands) connected to a computer with
NOVA 2.1.4 software. A three-electrode electrochemical cell
was used, in which the reference, auxiliary, and working
electrodes were Ag|AgCl|KClsat, Pt, and glassy carbon (GC, A =
0.196 cm2) modified with the prepared material, respectively.
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The GC electrode was polished with alumina slurry (0.3 and
0.05 μm, Buehler) and then further cleaned under ultrasound
for 5 min using a mixture of water and ethanol (2:1). The NiO
nanoflower suspension was prepared by mixing 2.0 mg of the
material, 950 μL of deionized water, and 50 μL of Nafion 5.0
wt %58 and kept under ultrasound for 1 h. Then, 20 μL of the
suspension was dropped onto the GC surface and left to dry
under ambient conditions. The measurements were performed
using freshly prepared 0.1 mol L−1 KOH and 1.0 mmol L−1

hydrazine. The calibration plots were constructed by the
standard addition method.
The real sample analysis used tap water (from the

laboratory), which was diluted without further purification
with 0.1 mol L−1 KOH with a 1:4 dilution. After this, different
hydrazine concentrations were added to the sample and
analyzed with the standard addition method.59

Amperometry measurements were performed by setting the
modified working electrode to different concentrations of
hydrazine; a hydrodynamic study was carried out in the
presence of 50 μmol L−1 of hydrazine, varying the potentials
(−0.10, −0.05, 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.35 V).
The limit of quantification (LOQ) and the limit of detection
(LOD) were estimated using the following equations:60

=
s

LOQ
10

=
s

LOD
3

where s is the slope of the calibration curve and σ is the
standard deviation of the linear coefficient.

■ RESULTS AND DISCUSSION
In this study, we decided to synthesize a hierarchical nickel-
based material with a high surface-to-volume ratio to exploit its
properties via a simple, scalable, viable, and cost-effective
hydrothermal method. On this basis, the characteristics raised
from hierarchical structures are expected to provide faster
electron transfer and sensitivity, essential features for electro-
chemical sensors.38 Therefore, the investigations started with
the gram-scale synthesis of NiO nanoflowers. Our approach
enabled their synthesis on a gram scale (approximately 1.75
grams of nanoflowers) and using inexpensive reactants (as
described in the Experimental section).
Figure 1A−C shows SEM images in different magnifications,

showing that the nanoflowers displayed well-defined shapes
and uniform sizes, with petals being 15 ± 8 nm in width and
>1 μm in diameter (each nanoflower holds approximately 15

petals). In addition, visible boundaries in the material suggest a
growth mechanism of particle attachment.61 This could be
confirmed through the images of TEM (Figure 1D) and
HRTEM (Figure 1E,F). It was possible to observe that a
particle attachment forms the NiO nanoflowers following a
self-assembly process. The selected area electron diffraction
(SAED) pattern of NiO nanoflowers (Figure 1G) showed that
the nanomaterial is polycrystalline. In addition, STEM-EDS
elemental mapping (Figure 1H,I) confirmed the uniform
distribution of Ni and O at the NiO nanoflower surface.
Although the nanoflowers were successfully prepared, a pure

crystal phase is required to associate its electrochemical
performance with its structure. Therefore, we used the Rietveld
refinement method to construct diffraction patterns calculated
according to a crystallographic standard model.62 The
experimental XRD pattern was adjusted to a Rietveld routine
to provide structural parameters of the as-prepared material
(Figure 2). The refinement confirmed the presence of NiO
crystals with a pure phase (there were no diffraction peaks of
other impurities), as aimed by the synthesis (Rwp = 2.19% e

Scheme 1. Illustrative Synthetic Route for the Production of
NiO Nanoflowers

Figure 1. SEM images of the NiO NF at different magnifications (A−
C), low-magnification TEM image (D). HRTEM image with Moire ́
fringes marked by the arrows (E). HRTEM image with the spacing
between the atomic planes of 0.24 nm, corresponding to the d value
of (111) planes (F). The selected area diffraction pattern of image
(D) with the structures indexed (G). The index was done with the
PDF card’s standard powder X-ray diffraction pattern (code 00-001-
1239). STEM-EDS elemental mapping of Ni (H) and O (I).

Figure 2. Rietveld refinement plot for the NiO NF showing the
observed, calculated, and difference between X-ray patterns.
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G.O.F = 1.16). The diffraction peaks could be well indexed to
the cubic-type structure, with a space group of Fm-3m and
lattice parameter and microstrain of 4.178 Å e 8.2 × 10−3,
respectively, exhibiting high crystallinity of the NiO phase.
Once a pure phase was achieved, the surface electronic state

and surface analysis of the material was further investigated by
XPS to characterize the material further. Thus, the survey
spectrum confirms the presence of Ni, O, and C without
interferents (not shown). The high-resolution spectra of Ni 2p
exhibit two major peaks at 871.7 and 854.2 eV, attributed to
the orbital splitting level of Ni 2p1/2 and Ni 2p3/2,
respectively.63 As shown in Figure 3A, the Ni 2p profile for

the structure showed an orbital energy separation with a
difference of 17.6 eV, which confirms that the oxidation state
of the Ni ion exists in a 2+ valence state.64 In addition, two
shake-up satellite peaks were observed at 877.3 and 860.7 eV,
assigned to Ni 2p1/2 and Ni 2p3/2, respectively.

65

Furthermore, high-resolution spectra of O 1p revealed three
peaks at 528.3, 529.3, and 530.7 eV for the O 1s spectrum
(highlighted as I, II, and III in Figure 3B). The first one, at
528.3 eV, can be attributed to the nucleophilic oxygen species
and typically indicates the presence of chemisorbed oxygen
(hydroxide binding). The binding energy peak at 529.3 eV was
ascribed to the typical metal-oxygen bond (lattice oxygen) of
Ni−O. The last peak, at 530.7 eV, could be related to the
defective nickel oxide (oxygen vacancy).66

In the next step, to estimate the electrochemical perform-
ance of NiO NF/GCE, cyclic voltammetry studies were
performed in the presence of hydrazine 1 mmol L−1 at a scan

rate of 50 mV s−1 using KOH 0.1 mol L−1 as the supporting
electrolyte, as shown in Figure 4. There were no apparent

redox peaks for the bare GCE, when the electrode was
interrogated in the presence of hydrazine 1 mmol L−1 in
alkaline media (curve A, black line). This result agrees with the
previous report, showing that hydrazine oxidation does not
occur on non-activated bare GCE surfaces.67 Thus, the
electrochemical oxidation of hydrazine requires the use of
electrocatalytic modifiers to reduce its oxidation overpotential.
To evaluate the response of novel NiO NF/GCE, the

electrode response was first investigated in the absence of
hydrazine (curve B, blue line). According to the literature, NiO
on the surface tends to form surface-Ni(OH)2 immediately,
when the electrode is placed in alkaline media. CV measure-
ments of NiO NF/GCE were recorded in KOH 0.1 mol L−1

using a potential range from −0.3 to +0.6 V vs Ag/AgCl. In
these conditions, it was possible to identify an improvement of
the faradaic and capacitive currents with a typical oxidation
peak near +0.3 and +0.5 V vs Ag/AgCl, which can be
associated with the formation of NiO(OH) in basic solution
(curve B).68 Basically, the formation of Ni(OH)2 proceeds
through three consecutive steps: the discharge of OH− anions
at the metal surface and the formation of the adsorbed OH
species (Ni-OHad), the incorporation of OH into ″interme-
diary surface″ or subsurface between the first and the second
layer of Ni atoms, and chemisorption of the second monolayer
of OH groups on the (OHNi) subsurface. According to the
literature, it can be explained due to the redox process of Ni2+/
Ni3+, which is presented in eq 1. Also, the appearance of two
oxidation peaks suggests the phase transformation from β-
NiO(OH) to γ-NiO(OH).69

+ +Ni(OH) OH NiO(OH) e2 (1)

+ + + +N H 4 NiO(OH) N 4H O 4e NiO2 4 2 2 (2)

After hydrazine addition, it was possible to notice the
appearance of an irreversible oxidation peak near +0.08 V vs
Ag/AgCl that presented a current density of 671 μA cm−2

(curve C, red line). This signal can be associated with
hydrazine oxidation in the presence of OH− species, producing
N2 and H2O, as illustrated in eq 2.

69 A possible oxidation
mechanism can be associated with NiO(OH) production onto
the electrode surface. The adsorbed OH− localized on the 3d
orbital of Ni will subsequently participate in hydrazine
oxidation to produce N2 and H2O.

56 In a possible mechanism,

Figure 3. (A) Ni and (B) O XPS high-energy resolution spectra of the
NiO NF.

Figure 4. CV curves performed in 0.1 M KOH at the scan rate of 50
mV s−1 of the bare (A) GC electrode, (B) NiO NF/GCE electrode,
and (C) NiO NF/GCE electrode in the presence of 1 mmol L−1 of
hydrazine.
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the electrocatalytic cycle is completed with the oxidation of
hydrazine, which delivers free NiO nanoflowers onto the
electrode surface, as shown in eq 2.
Due to their several thin layers of petals forming an irregular,

rough, and porous structure, NiO nanoflowers are expected to
provide an increased number of active sites for the electro-
catalytic oxidation of hydrazine, explaining the superior
performance of this material. Such a proposition is confirmed
by the textural properties of the NiO nanoflowers obtained by
N2 adsorption (BET method). NiO nanowires presented a
much higher specific surface area (42 m2 g−1) than commercial
NiO (9 m2 g−1), as observed in Figure S1. Compared to
previous work, the proposed NiO NF/GCE requires only
+0.08 V vs Ag/AgCl for hydrazine oxidation, whether similar
reactions occur at +0.87 V vs Ag/AgCl, even in the presence of
highly ordered metallic oxide materials.70 The peak current
improvement and the low oxidation overpotential of hydrazine
suggest the excellent electrocatalytic behavior of the proposed
NiO NF/GCE.
CV at different scan rates provides important details of the

redox mechanisms at different modified electrode surfaces,
allowing to study the adsorption and/or diffusion redox
mechanisms. From this perspective, the NiO NF/GCE was
tested at different scan rates from 10 to 100 mV s−1 in the
presence of hydrazine 1 mmol L−1 in alkaline media KOH 0.1
mol L−1. CV recorded at different scan rates are presented in
Figure 5A. From the voltammograms, it was possible to
observe a linear behavior between hydrazine anodic peak
current (Ipa) and the square root of scan rate (υ1/2), as seen in
Figure 5B. The linear dependence can be expressed as I/μA
cm−2 = 5.13 υ1/2 + 9.87 with a correlation coefficient of 0.999.
According to the Randles-Sevick equation, this linear depend-
ence indicates a typical diffusion-controlled redox reaction

onto the electrode/solution interface. This result suggests a
faster electron transfer redox reaction led by the diffusion of
hydrazine species from the bulk to the electrode surface.50

Finally, to investigate the analytical applicability of NiO NF/
GCE for the electrochemical determination of hydrazine, CV
experiments were performed in the presence of a different
concentration of the analyte in KOH 0.1 mol L−1 at 50 mV s−1.
Figure 6A shows the voltammograms for successive additions

of hydrazine. The increase of the oxidation peak at +0.08 V vs
Ag/AgCl is proportional to the increase of analyte concen-
tration in a range from 0.1 to 1 mmol L−1. Figure 6B presents
the linear dependence between the anodic peak current density
and hydrazine concentration that can be expressed by I/μA
cm2 = 137 + 547 [hydrazine] mmol L−1 with a correlation
coefficient of 0.998.
The calibration plots obtained sensitivity and intercept

deviation values were 547 μA cm−2 mmol L−1 and 137 μA
cm−2, respectively. The limit of detection and limit of
quantification were statistically calculated based on the
IUPAC recommendations as 3 × SD/slope and 10 × SD/
slope, respectively. For this purpose, SD was considered as the
standard deviation of blank measurements (n = 10). The
estimated values were 10.8 e 30.6 μmol L−1 for LOD and
LOQ, respectively. According to the United States Environ-
mental Protection Agency (EPA), the maximum residue level
of hydrazine in effluents is 1 ppm.50 This value corresponds to
31 μmol L−1. Since the LOD and LOQ are in the range of the
required MRL values, the proposed sensor presents promising
features for hydrazine monitoring in environmental samples.
Also, the low oxidation overpotential ensures a high selectivity
for this method once only a few organic molecules can undergo
oxidation reactions in the applied potential range. Table 1
summarizes the sensor performance of NiO NF/GCE for
hydrazine oxidation.

Figure 5. (A) CV of the NiO NF/GCE electrode recorded at
different rates in 0.1 mol L−1 KOH solution containing 1.0 mol L−1

hydrazine at room temperature. (B) Graph of dependence of the peak
current (Ip) with the square root of the sweep speed of the potential
for hydrazine oxidation on the modified electrode.

Figure 6. (A) CV of NiO NF/GCE performed in the presence of
different concentrations of hydrazine 0.1−1 mmol L−1 in KOH 0.1
mol L−1 at 50 mVs−1. (B) Linear dependence between μA cm−2 vs
Hydrazine concentration.
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Data obtained from the literature were used to estimate the
electrochemical performance of NiO NF/GCE compared to
other electrode materials. Table 2 shows comparative results of
oxidation overpotential, electrolyte solution, linear range, and
sensitivity of NiO nanoflowers and other reported materials for
hydrazine oxidation. Interestingly, the NiO NF/GCE provided
a low hydrazine oxidation overpotential, highlighting the
excellent electrocatalytic behavior of NiO nanoflowers. Indeed,
this result improves the selectivity toward hydrazine determi-
nation, avoiding the overlap of redox reactions of other
molecules that commonly occur in higher overpotentials.
Another key point of NiO NF/GCE performance was the
sensor sensitivity, which was higher than other electrocatalytic
materials based on nickel, gold, cobalt, and gold nanostruc-
tures. For example, the sensor showed a 4-fold improvement in
sensitivity compared to β-Nickel hydroxide nanoplatelet-
modified electrode (Ni-NP).52 This result indicates the high
performance and promising application of the NiO nano-
flowers for hydrazine sensing. Additionally, the sensor showed
an adequate linear range, suggesting possible analytical
application in environmental sensing.
Amperometry measurements were taken at the same

concentration of hydrazine, in which a hydrodynamic study
was used to optimize the applied potential. According to
Figure S2, the results suggested that the optimal potential is
150 mV, which allows for better results from hydrazine’s
electro-oxidation on the surface of the NiO NF electrode.
Figure S3A shows the amperometry curves for the determi-
nation of hydrazine in different concentrations (0.99−98.13
μmol L−1), in which it is possible to observe a linear
dependence of the hydrazine oxidation peak current, regarding
the concentration. The corresponding calibration curve
(Figure S3B) shows the linear current increase with a rise in
hydrazine concentration. The linear equation obtained was I
(μA) = 0.10866[hydrazine (μmol L−1)] + 0.01155, and the
correlation coefficient was estimated at 0.999. The LOQ and
the LOD were 0.0898 and 0.026 μmol L−1, respectively.

Then, a selectivity study was performed in the presence of
possible interfering agents (K+, Cl−, Na2+, PO42−, and urea) at
a concentration ratio of 1:1 in 0.1 mol L−1 KOH solution in
the presence of 30 μmol L−1 of hydrazine. Figure S4A shows
amperometry curves, in which it was observed that the
addition of these interfering species did not show a
considerable change in the current signals for hydrazine
oxidation. As seen in Figure S4B, the results show high
selectivity, with a response variation for hydrazine of less than
9%.
In this scenario, the applicability of the proposed system was

investigated in a real sample with tap water (Figure S5). Due
to the high selectivity demonstrated by the modified electrode,
no previous treatment was necessary; only a dilution of the
sample in KOH 0.1 mol L−1 support the electrolyte before the
analysis. Addition and recovery measurements were conducted
to elucidate the accuracy of the method. The hydrazine
concentrations found and the recovery rate are shown in Table
3. The results indicated an excellent hydrazine recovery, and

each addition’s mean relative standard deviation (R.S.D. %)
indicates good reproducibility. Thus, it is suggested that the
applicability of the modified electrode was confirmed through a
sensitive method for detecting hydrazine in a tap water sample
in 0.1 mol L−1 KOH solution.

■ CONCLUSIONS
This work provides a one-pot synthetic route for the gram-
scale production of hierarchical nickel oxide nanoflowers. By
morphological and chemical analysis, it was possible to
characterize the novel-produced NiO nanoflowers’ chemical
composition, structure, and morphology. The novel material
was dispersed in Nafion and drop-cast onto a glassy carbon
surface to produce a modified electrocatalytic platform (NiO
NF/GCE). The NiO NF/GCE provided an effective, low-cost,
and high-performance alternative for hydrazine’s selective and
sensitive electrocatalytic sensing. In the presence of hydrazine,
it was possible to observe an oxidation overpotential of only
+0.08 V vs Ag/AgCl, which ensures a critical behavior for the

Table 1. Parameters Evaluated for the NiO NF/GCE in the
Presence of Hydrazine

linear range 100−1000 μmol L−1

intercept 157.3 μA cm−2

slope 547 μA cm−2 mmol L−1

correlation coefficient 0.998
limit of detection 10.0 μmol L−1

limit of quantification 30.6 μmol L−1

Table 2. Comparative Analytical Parameters Obtained for Hydrazine Different Electrochemical Sensors

eletrode modification overpotential (V) electrolyte (mmol L−1) linear range (μΜ) sensitivity (μA cm−2/mmol L−1) ref

NiO/NF +0.08 vs Ag/AgCl KOH 0.1 100−1000 547 this work
aNiCo2O4 +0.36 vs SCE PBS 0.1 7−1780 48.25 50
bNiCoSe2 +0.6 vs Hg/HgO NaOH 0.1 4−2450 16,170 71
cAu/Ti −0.55 vs Ag/AgCl NaOH 1.0 5−40,000 1.12 51
dNi-NP +0.5 vs SCE NaOH 0.1 1−1300 133 52
eZIF-67/CoAl +0.87 vs Ag/AgCl NaOH 0.1 30−1200 4.1 70
fC-Cr2O3@Ni +0.4 vs Ag/AgCl PBS 0.1 0.05−200 918.5 72
gZn-MOF-rGO +0.42 vs Ag/AgCl PBS 0.1 0.001−100 540 73

aNickel cobaltite nanoparticles. b3D Setaria viridis-like NiCoSe2 nanoneedle array.
cNanoporous gold particle-modified titanium. dβ-Nickel

hydroxide nanoplatelets. eZeolite imidazole framework-67/cobalt-aluminum-layered double hydroxide. fNi(II)-tannic acid complexes on the lab-
made C-Cr2O3 nanoparticles.

gZinc-metal organic frameworks and reduced graphene oxide.

Table 3. Determination of Hydrazine in a Sample with Tap
Water in 0.1 mol L−1 KOH Solution (n = 3)

sample spiked found recovery (%) R.S.D. (%)

tap water 24.94 24.37 97.7 6.3
49.75 50.87 102.3 3.4
74.44 78.57 105.5 7.2
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selective electrochemical determination of this compound. By
CV analysis, it was possible to obtain high sensitivity and a low
limit of detection, enabling its possible application for
environmental monitoring. Amperometric measurements
obtained the same conclusions. Also, the material presented
a remarkable selectivity and was effective when applied in a real
sample. Future efforts can be employed to investigate the
electrocatalytic performance of this material for the determi-
nation of glucose and hydrogen peroxide as well.
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