

UNIVERSIDAD PRIVADA NORBERT WIENER FACULTAD DE CIENCIAS DE LA SALUD PROGRAMA DE SEGUNDA ESPECIALIDAD EN ENFEREMERÍA ESPECIALIDAD: ENFERMERIA EN GESTION DE CENTRAL DE ESTERILIZACIÓN

CORROSION DE LOS INSTRUMENTOS QUIRURGICOS POR EL USO DE AGUA COMUN VS AGUA DESTILADA.

TRABAJO ACADÉMICO PARA OPTAR EL TÍTULO DE ESPECIALISTA EN ENFERMERIA EN GESTION DE CENTRAL DE ESTERILIZACIÓN

Presentado por:

AUTORES: CASTILLO SANCHEZ, ROSA MARIA

ASESOR: Dr. GÓMEZ GONZALES, WALTER

LIMA – PERÚ 2016

DEDICATORIA

A mi familia que es lo mejor y valioso que Dios me ha dado, quienes han sido pilar fundamental para mi desarrollo profesional ASESOR: Dr. Walter Gómez Gonzales

JURADO

Presidente: Mg. Julio Mendigure Fernandez

Secretario: Dr. Walter Gómez Gonzáles

Vocal: Mg. Reyda Canales Rimachi

INDICE

	Pág.
RESUMEN	ix
ABSTRACT	х
CAPÍTULO I: INTRODUCCIÓN	
1.1. Planteamiento del problema	12
1.2. Formulación del problema	16
1.3. Objetivo	16
CAPITULO II: MATERIALES Y MÉTODOS	
2.1. Diseño de estudio: Revisión sistemática	17
2.2. Población y muestra	17
2.3. Procedimiento de recolección de datos	17
2.4. Técnica de análisis	18
2.5. Aspectos éticos	18
CAPITULO III: RESULTADOS	
3.1. Tablas de Estudios	19
3.1. Tablas de Resumen	42
CAPITULO IV: DISCUSIÓN	
4.1. Discusión	57
CAPITULO V: CONCLUSIONES Y RECOMENDACIONES	
5.1. Conclusiones	51
5.2. Recomendaciones	52
REFERENCIAS BIBLIOGRÁFICAS	53

ÍNDICE TABLAS

		Pág.
Tabla 1:	Estudios sobre corrosión de los instrumentos quirúrgicos por el uso de agua común vs agua destilada.	19
Tabla 2:	Resumen de estudios sobre corrosión de los instrumentos quirúrgicos por el uso de agua común vs agua destilada.	42

RESUMEN

Objetivo: Determinar si la corrosión de los instrumentos quirúrgicos, es producida por el uso de agua común vs agua destilada. Materiales y Métodos: Las Revisiones Sistemáticas son un diseño de investigación observacional y retrospectivo, que sintetiza los resultados de múltiples investigaciones primarias. Son parte esencial de la enfermería basada en la evidencia por su rigurosa metodología, identificando los estudios relevantes para responder preguntas específicas de la práctica clínica. Resultados: En la selección definitiva se eligieron 13 artículos, encontramos que el 31% (4) corresponden a España, con un 14% (2) corresponden a Colombia y Chile, con 7% (1) se encontró a Cuba, México, Perú, Venezuela y Brasil respectivamente. El 69%, fueron estudios experimentales de los países de España, Perú, México, Colombia, Venezuela y Chile. Con un 31% tenemos estudios transversales pertenecientes a Brasil, Chile, España, y Cuba. Del total de artículos analizados, el 80% concluyó que el agua común produce corrosión en los instrumentos quirúrgicos. Se evidenció en las investigaciones revisadas que los instrumentos de acero inoxidable no deberán someterse a procesos de limpieza, desinfección y esterilización, cuyo componente de dilución sea agua común, ni, sumergirse en una solución fisiológica de sal. El contacto prolongado y la inmersión en la solución, causan picaduras de corrosión y forma corrosión por tensofisuracion. Conclusión: Se recomienda utilizar agua destilada para evitar la corrosión de los instrumentos quirúrgicos, especialmente para el aclarado final, después de la limpieza y desinfección.

Palabras clave: "agua dura", "agua destilada", "corrosión".

ABSTRACT

Objective: To determine if the corrosion of surgical instruments is produced by the use of common water vs. distilled water. Materials and Methods: Observational, retrospective systematic review, an essential part of evidence-based nursing. Research has focused on corrosion in surgical instruments, which during the washing and sterilization stages are processed using common, soft, or distilled water. The search was restricted to full-text articles, and the selected articles were critically read using Jover's evaluation to identify their degree of evidence. In the final selection, 13 articles were selected, 31% (4) corresponded to Spain, and 9% (2) corresponded to Colombia and Chile, with 7% (1) Cuba, Mexico, Peru, Venezuela and Brazil respectively. Experimental studies have been studied with 69%, mainly in the countries of Spain, Peru, Mexico, Colombia, Venezuela and Chile. With 31% we have cross-sectional descriptive studies pertaining to Brazil, Chile, Spain, and Cuba. Results: Of the total of articles analyzed, 80% concluded that common water causes corrosion in surgical instruments. It was evidenced in the investigations reviewed that stainless steel instruments should not be subjected to cleaning, disinfection and sterilization processes, whose dilution component is common water, or submerged in a physiological saline solution. Prolonged contact and immersion in the solution causes corrosion pitting and forms corrosion by stress-cracking.

Conclusion: To avoid corrosion in surgical instruments, it is recommended to use distilled water, especially for final rinsing, after cleaning and disinfection.

Key words: "hard water", "distilled water", "corrosion".

CAPÍTULO I: INTRODUCCIÓN

1.1. Planteamiento del problema.

Los instrumentos quirúrgicos, representan un valor material significativo dentro de las inversiones totales de un hospital, constituye el activo fijo por la alta inversión que significa para el sistema de salud, instrumentos de las diferentes especialidades: traumatología, cirugía, endoscopias, laparoscopias, neurocirugía, odontología, y otros. Estos se encuentran día a día expuestos a múltiples agresiones de tipo mecánico, térmico y químico, al ser sometidos a procedimientos de limpieza manual o mecánica, descontaminación, desinfección y esterilización.

En la fabricación de productos médicos, el fabricante tiene que tener en cuenta, junto al diseño, acabado y superficie, los materiales y el tratamiento que se da al instrumental para armonizar con la finalidad para la que está destinados. En referencia al instrumental quirúrgico, en la mayoría de los casos, los usuarios exigen elasticidad, resistencia, rigidez, capacidad cortante, alta resistencia a la corrosión y al desgaste, características exclusivas de los aceros inoxidables y templados (1).

La corrosión se define como el deterioro de un material a consecuencia de un ataque electroquímico por su entorno. La resistencia a la corrosión de los aceros inoxidables depende en primer lugar de la calidad y del espesor de la capa pasiva. La capa pasiva es una capa de óxido de cromo que se genera por reacción con el componente de cromo de la aleación de acero (por lo menos del 12 %) y el oxígeno ambiental del entorno. Esta es altamente resistente a la corrosión, ahora bien, una inadecuada limpieza y manejo del instrumental puede provocar la ruptura de esta capa o su desaparición, llegando finalmente a ser causante de corrosión. Las superficies que no pueden ser pulidas (cremalleras, superficies irregulares, etc.) están más propensas a ser atacadas por la corrosión que afortunadamente no penetra profundamente y puede ser eliminada con un cepillo suave y una solución de detergente adecuada. Por el alto costo del instrumental quirúrgico, como también su reparación o reposición, ya que el acero inoxidable no garantiza una eterna indemnidad frente a ataques químicos, físicos y térmicos, es que debemos preocuparnos de un manejo correcto, mantención apropiada con procesos de preparación y tratamientos óptimos.

El manejo adecuado del instrumental quirúrgico se inicia desde su adquisición en el proceso de selección. Cuando se toma la determinación de incorporar un nuevo instrumento; el usuario, debe solicitar información del fabricante respecto de los métodos de limpieza y de esterilización, los cuales recomiendan que para el lavado se debe tener fuentes de agua desmineralizada, igualmente el enjuague de detergente enzimático o desinfectante debe ser adecuado para evitar restos de detergente que alteren el proceso de esterilización y dañe el instrumental.

Por experiencia se sabe que estos ataques corrosivos van disminuyendo con el espesor creciente de la capa pasiva porque, de este modo, la probabilidad de penetración de los cloruros se reduce frente al material básico sin proteger.

La mayor parte del instrumental quirúrgico se elabora con un acero martensítico, que es mucho más duro y fácil de mantener afilado que el acero austenítico. Según el tipo de la aleación utilizada varía ligeramente

para obtener más afilación o fuerza. Los implantes y el instrumental que pueden ser puestos bajo presión (tornillos para comprimir huesos y placas con tornillos para unirlos, prótesis, etc.) se fabrican de acero austenítico, porque es menos quebradizo. El cuidado de los instrumentos es fundamental para su adecuado mantenimiento y manejo.

La limpieza y desinfección son procedimientos que cumplen un papel importante dentro del tratamiento del instrumental, ya que es el proceso en el cual se eliminan los restos de materia que quedan en la superficie de los instrumentos luego de las intervenciones quirúrgicas. Para lograr una correcta limpieza y desinfección manual se recomienda tomar en cuenta los siguientes aspectos: emplear agua desmineralizada que posea una cantidad de cloruros menor a 0,01 mg/kg y un valor de pH entre 5 y 7. Al utilizar los productos de limpieza y desinfección, se deberá cumplir sin falta las indicaciones del fabricante referentes a concentración, temperatura y tiempo que se ha de mantener dichos productos (1,2).

Posibles focos de origen de los cloruros durante el ciclo de empleo:

- Contenido general en el agua potable que depende del origen del agua.
- Agua de alimentación no desalada suficientemente para el enjuague final y para la esterilización por vapor.
- Sal regeneradora arrastrada o calada por intercambiadores iónicos durante la fabricación de agua ablandada
- Agente de tratamiento mal empleado o no autorizado para la preparación.
- Soluciones isotónicas (p. ej. soluciones fisiológicas salinas), cáusticos y medicamentos.
- Residuos orgánicos secos líquidos corporales, p. ej. sangre con concentración de cloruro 3.200-3.550 mg/l, saliva, sudor.

En el caso de aparecer corrosión en instrumental nuevo de calidad, que no se observa en instrumental antiguo y tratado al mismo tiempo, significa que el motivo, en todos los casos examinados hasta la fecha, son las condiciones de tratamiento a la que se someten durante una o más etapa (2).

Podemos afirmar entonces que la alteración de la afectación de la capa pasiva del acero se debe al medio ambiente, a los procesos de limpieza, desinfección y esterilización al cual son sometidos.

El proceso de limpieza de un instrumento en la Central de esterilización del Hospital Regional de Lambayeque, conlleva varios pasos, de acuerdo a guía de procedimientos aprobada en el año 2012, inmersión en solución de detergente enzimático preparado con agua blanda, luego, llevado al chorro de agua común para el enjuague, un segundo paso, se somete a lavado ultrasónico, en donde se utiliza igualmente agua blanda. Tenemos actualmente un gran número de instrumentos con fallas y alteraciones y sabemos que estos posibles focos de corrosión pueden venir del agua dura, agua común, o agua no bien tratada, agua de la autoclave, entre otros, ocasionados por las soluciones empleadas en el tratamiento durante los procesos relacionados a la limpieza, desinfección y esterilización. Situación actual es, que se han desincorporado instrumental quirúrgico por fractura y por distintos tipos de corrosión, como lo son por picadura. La habilidad del cirujano puede verse afectada si opera con instrumental de menor calidad, siendo preciso, seguir las normas de tratamiento y uso existentes al respecto (2).

El presente trabajo de investigación se ha centrado en determinar qué tipo de agua común o destilada, sería la causa de la corrosión en los instrumentos quirúrgicos. En la central de esterilización, no disponemos de agua destilada para los procesos mencionados. El no uso de agua destilada o desmineralizada podría ser factores causantes de corrosión en los metales, por lo que este estudio permitirá establecer si el agua

común o destilada seria la causa de la presencia de corrosión en el instrumental quirúrgico.

1.2. Formulación del problema.

La pregunta formulada para la revisión sistemática se desarrolló bajo la metodología PICO y fue la siguiente:

P = Paciente/	I = Intervención	C = Intervención	O = Outcome	
Problema		de comparación	Resultados	
Instrumentos quirúrgicos	Agua común	Agua destilada	Corrosión	

¿La corrosión de los instrumentos quirúrgicos es producida por el uso de agua común vs agua destilada?

1.3. Objetivo

Determinar si la corrosión de los instrumentos quirúrgicos, es producida por el uso de agua común vs agua destilada

CAPITULO II: MATERIALES Y MÉTODOS

2.1. Diseño de estudio: Revisión sistemática.

Las Revisiones Sistemáticas son un diseño de investigación observacional y retrospectivo, que sintetiza los resultados de múltiples investigaciones primarias. Son parte esencial de la enfermería basada en la evidencia por su rigurosa metodología, identificando los estudios relevantes para responder preguntas específicas de la práctica clínica.

2.2. Población y muestra.

La población constituida por la revisión bibliográfica de 13 artículos científicos publicados e indizados en las bases de datos con una antigüedad no mayor de diez años y que responden a artículos publicados en idioma español.

2.3. Procedimiento de recolección de datos.

La recolección de datos se realizó a través de la revisión bibliográfica de artículos de investigaciones tanto nacionales como internacionales que tuvieron como tema principal la corrosión de los instrumentos quirúrgicos causados por el uso de agua común, agua destilada, desmineralizada, calidad de agua, De todos los artículos que se encontraron, se incluyeron los más importantes según nivel de evidencia y se excluyeron los menos

relevantes. Se estableció la búsqueda siempre y cuando se tuvo acceso al texto completo del artículo científico.

El algoritmo de búsqueda sistemática de evidencias fue el siguiente:

Corrosión OR Agua común OR agua destilada OR agua desmineralizada OR agua desionizada AND instrumental quirúrgico, AND falla de los instrumentos, AND corrosión por agua, AND corrosión de materiales, AND calidad del agua.

Base de datos:Lilacs, Scielo, Dialnet, Google académico

2.4. Técnica de análisis.

El análisis de la revisión sistemática está conformado por la elaboración de una tabla de resumen (Tabla N° 1) con los datos principales de cada uno de los artículos seleccionados, evaluando cada uno de los artículos para una comparación de los puntos o características en las cuales concuerda y los puntos en los que existe discrepancia entre los artículos nacionales e internacionales, así como una evaluación crítica e intensiva de cada artículo de acuerdo a los criterios técnicos establecidos y a partir de ello se determinó la calidad de la evidencia y la fuerza de recomendación para cada artículo.

2.5. Aspectos éticos.

La evaluación critica de los artículos científicos revisados, está de acuerdo a las normas técnicas de la bioética en la investigación, garantizando el cumplimiento de los principios éticos en su ejecución.

CAPÍTULO III: RESULTADOS

3.1. Tablas 1: Estudios sobre corrosión de los instrumentos quirúrgicos, por el uso de agua común vs agua destilada

DATOS DE LA PUBLICACIÓN

1. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Camero S, Talavera I., González G.2, Réquiz R., Rosales A., Suárez M., León J., González W.4	2008	Estudio de la corrosión de una aleación Ti6Al4V utilizada como biomaterial.	Revista de la Facultad de ingeniería, Universidad Central de Venezuela. ISSN 0798- 4065 www.scielo.br	Rev. Fac. Ing. UCV v.23 n.3 Caracas sep. 2008

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos ético	Resultados	Conclusión
Cuantitativa Experimental	Muestras de una aleación Ti6Al4V en forma de barras, con un diámetro 1,27 cm en su condición de entrega (laminada en caliente, recocida y enfriada al aire).	A dichas muestras, se realizaron cortes transversales para obtener discos de 1 cm de altura. Con la finalidad de corroborar la composición química de la aleación en estudio, se determinó el porcentaje en peso de los elementos Ti, Al, y V, mediante la	No aplica	Resultados obtenidos de las muestras Ti6Al4V, después de un tiempo de exposición en la solución FCS y posterior a los ensayos electroquímicos: a 0 hora, se observa una superficie constituida por una película de productos de corrosión densos y homogéneos, la cual se presenta sobre toda la superficie ensayada. Como ha sido mencionado anteriormente (Tamiselvi, 2006), esta película que transfiere una alta	las muestras de aleación Ti6Al4V corresponde a un ataque preferencial de la fase, manifestándose como picaduras y corrosión microgalvánica, debido a la microestructura bifásica de la aleación, lo cual generó una

técnica de espectrometría de emisión óptica con acoplado plasma inductivamente (ICP-OES), determinando el porcentaje peso de los elementos antes mencionados. Las muestras se desbastaron con papel de carburo de silicio (N°. 180, 240, 320, 400, 600, 1200 У 2000), posteriormente fueron pulidas con alúmina de 1 mm, 0.3 mm v 0.05 mm. sobre paños de tela sintética y por último, se atacaron por inmersión en reactivo Krolls.

resistencia a la corrosión, es producto de las reacciones anódicas que suceden durante los ensayos de polarización potencio dinámicos. Este fenómeno favorece la formación de diferentes tipos de óxidos (TiO, TiO2 y Ti2O3), siendo más probable la formación del TiO2 (De Asis, 2006). Otra muestra después de un tiempo de exposición en la solución FCS de 180 horas y posterior a los ensayos electroquímicos. se resaltan claramente zonas diferenciadas, las zonas oscuras, corresponden posiblemente al óxido de titanio formado durante los ensayos electroquímicos y las zonas claras, tienden a describir las segregaciones de apatita, debido a la interacción de la solución FCS con el óxido de titanio se encuentran asociados a la disolución de apatita, promovido con la polarización aplicada, deduciéndose que estamos detectando los residuos de la misma.

entre las fases presentes.

Las técnicas electroquímicas de polarización estudiadas permiten inferir la tendencia corrosiva del material, siendo mayor con el incremento del tiempo de inmersión.

La película pasiva de la aleación Ti6Al4V, tiende a ser inestable en presencia de iones cloruros, incidiendo en la disolución preferencial del vanadio.

La aleación Ti6Al4V forma agregados de apatita en su superficie por interacción de la película de óxido de titanio con la solución de fluido corporal simulado (FCS), durante largos periodos de exposición.

2. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Oliveira, AC., Costa,	2009	Preparación de materiales en salas de	Enfermería global, ISSN 1695-6-141	Administración –
TMPF, Rodríguez Ribeiro,		depósito instrumental y de material	www.um.es/eglobal/- Brasil	gestión – calidad. Vol.
M., Oliveira de Paula, A.,		residual SDI: una reflexión sobre esta		16
Azevedo, TC.		práctica		

Tipo y Diseño de Investigación	Población y Muestra	estra Instrumentos A		Resultados	Conclusión
Cuantitativo Transversal,	55 trabajadores de (SDI) de unidades de apoyo, unidades de internamiento y centro quirúrgico de un hospital universitario Auxiliares de enfermería 60%, Técnicos de enfermería 36.6% y enfermeras 3.4%	Entrevista estructurada mediante un cuestionario en el que se abordan: categoría profesional, antigüedad en la SDI, la última vez que recibieron capacitación si existe supervisión, presencia de rutinas y la conducción del proceso de limpieza y desinfección de los equipamientos médicohospitalarios en la SDI.	Resolución 196/96 de la Comisión Nacional de Ética, registrado con Nº 267/033	La mayor parte de los trabajadores de las SDI, recibieron supervisión directa de las enfermeras, sin embargo, esta no se produjo de manera constante y sistemática. Existe una diversidad de conductas relacionadas con los productos de limpieza y desinfección utilizados, para el mismo material o artículo. Esa diferencia se produjo incluso entre los trabajadores de la misma unidad, en diferentes turnos de trabajo, lo cual puede ser una consecuencia directa de la falta de un programa de educación continua y de la ausencia de un manual de rutinas.	Aspecto de suma importancia es la existencia de rutinas escritas en las unidades, lo que permite a los funcionarios adoptar conductas normalizadas para realizar las etapas de los procedimientos de limpieza, inspección y desinfección. Vigilar el proceso de limpieza y principalmente desinfección de las salas de depósito de instrumental y material residual.

3. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Bérodier, Elise	2010	Efecto del medio en el comportamiento al desgaste de aceros inoxidables	Portal del coneixement obert del UPC Universidad politécnica de Catalunya - Barcelona	Escuela técnica superior de ingeniería industrial de Barcelona – 323, memoria.pdf

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos ético	Resultados	Conclusión
Cuantitativo Experimental	Barras corrugadas cilíndricas de 12 mm de diámetro de aceros inoxidables: martensíticos, austeníticos y dúplex	Ensayos de tribología utilizando la técnica de bola sobre disco. Determinar la cinética de desgaste para cada acero realizando ensayos para diferentes recorridos y utilizando agua como medio utilizando dos métodos pérdida de peso y perfil desgastado.	No aplica.	Al comportamiento tribológico de los aceros inoxidables se puede afirmar que el agua destilada disminuye el desgaste en los aceros inoxidables y además, modifica el comportamiento de manera diferente según la naturaleza del acero, ello se debe principalmente al efecto lubricante del fluido. Además, la resistencia de los aceros inoxidables a la corrosión se debe principalmente a la presencia de cromo. Cuando el	desgaste: con agua se han encontrado valores de tasa normalizada de desgaste menores que con aire. La principal razón
				desgaste ocurre, la capa se	1 ,

		rompe nuevamer	pero nte.	se	forma

4. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero	
G. Navarro	2010		Diposit digital de la Universidad de Barcelona	ENDODONCIA	
M. Mateos			Revista odontoestomatología. Asociación		
J.L. Navarro		química mediante microscopia	española de endodoncia ISSN: 1130-9903	Número 2	
C. Canalda		electrónica de barrido.		Abril-junio 1991	

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos ético	Resultados	Conclusión
Cuantitativo Experimental	El número total de limas investigadas fue de 40. La metodología seguida fue: Se dividieron a las limas en cuatro grupos, tres experimentales que corresponden a los tres antisépticos, y un cuarto grupo considerado como grupo control. Cada grupo contenía 10 limas. Se sometió cada grupo de limas a diez ciclos de desinfección, con una duración de 10 minutos cada ciclo. Luego se lavaron con agua y se secaron con aire caliente, antes de iniciar el siguiente ciclo.	Como desinfectantes químicos utilizamos: 1. Hipoclorito sódico al 3%. 2. Alcohol de 96° 3. Glutaraldehído al 2 por ciento. C. Para sumergir las limas en los diferentes agentes químicos, utilizamos recipientes de vidrio previamente esterilizado y seco.		Al estudiar la superficie de limas de endodoncia no se encontraron ni en la punta del instrumento ni en la parte activa fenómenos de corrosión en ninguna de las magnificaciones con las que se observaron, de tal forma que el aspecto de los instrumentos control era similar al de los instrumentos sometidos a desinfección química.	Las limas de acero inoxidable no sufren corrosión en su superficie en las circunstancias en las que ha sido realizado este estudio, aunque es posible que el resultado varíe si estas limas son sometidas a un mayor número de ciclos y a un mayor tiempo de contacto con los desinfectantes utilizados. Es posible que únicamente, tal como indican Neal y cols.w, aparezca corrosión si las limas se dejan sin lavar y sin secar.

5. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Olga Lidia Sánchez Sarría	2014	Manual de instrumental quirúrgico	Folleto - Hospital General Universitario Dr.	MediSur
Yaima González Diez Carlos			Gustavo Aldereguía Lima, Cienfuegos, Cuba,	Volumen 12
Manuel Hernández Dávila			CP: 55100 ISSN 1727-897X	Numero 5
Evangelina Dávila Cabo de Villa			Scielo	

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos ético	Resultados	Conclusión
Cuantitativo Transversal	Instrumental quirúrgico	Referencias de que los instrumentos de acero inoxidable son sometidos a un proceso de pasivación que tiene como finalidad proteger su superficie y minimizar la corrosión.		Las aleaciones del instrumental quirúrgico, deben tener propiedades específicas para hacerlos resistentes a la corrosión cuando se exponen a sangre y líquidos corporales, soluciones de limpieza, esterilización y a la atmósfera. Un producto que cubre los requisitos de la familia de antisépticos clorados, es un cloroxidante electrolítico. Es suficiente introducir el instrumental por espacio de 15 minutos en una dilución al 20 % y durante 30 minutos en una dilución al 10 % para lograr la esterilización del instrumental Realizar una limpieza escrupulosa (con solución antiséptica) y sobre todo no dejar más tiempo del indicado para lograr la esterilización en frío, pues se puede descromar el instrumental (tener en cuenta la calidad del instrumental).	Utilizar desinfectantes y soluciones esterilizantes que garanticen una desinfección y esterilización adecuada pero que no causen corrosión al instrumental. Un producto que cubre los requisitos de la familia de antisépticos clorados es un cloroxidante electrolítico

6. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Samuel Rosario Francia Juan Carlos Yacono Llanos	2003	Materiales: La corrosión, su tradición y alcances	Revista del Instituto de investigación. Instituto de Investigación de la Facultad de Geología, Minas, Metalurgia y Ciencias Geográficas ISSN 1682-3087 Lima	Vol. 6, N° 11, 2003

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos ético	Resultados	Conclusión
	Aceros inoxidables en presencia de soluciones de cloruros acompañados de esfuerzos de tracción	Uso de soluciones de cloruros acompañados de esfuerzos de tracción, fueron fácilmente destruidos por la corrosión bajo	El presente artículo solo pretende advertir a los ingenieros de diseño, inversionistas empresarios, gobierno, entidades científicas y	Materiales fueron sometidos a soluciones de cloruros, se determina que la corrosión en sus dos aspectos, de enseñanza e investigación, tiene una larga tradición en las diferentes instituciones tecnológicas y científicas. El costo que ocasiona es	Se pueden establecer variados criterios para clasificar los diferentes modos de corrosión que se presentan. Las informaciones de muchos investigadores señalan que por lo menos hay 16 mecanismos por los que la corrosión nos ataca. La corrosión llega a causar pérdidas en muchos productos que se han obtenido
Cuantitativo	Aceros inoxidables	tensión y fueron menos	tecnológicas, profesionales de	menos sorprendente si consideramos que la	con mucho esfuerzo. No olvidar que la corrosión causa
Experimental	moxidadico	resistentes que los aceros no aleados. También son más susceptibles que otros aceros de ser atacados de forma	todas las carreras, médicos y estudiantes en general sobre la importancia que debemos dar a los fenómenos de la corrosión por los daños que causa, y que el apoyo	corrosión ocurre con una gama de grados de severidad donde quiera que metales y otros materiales sean usados. Sin embargo, si se aplicaran adecuadamente a esta problemática los conocimientos ya existentes, se lograría reducir las pérdidas sin necesidad de	pérdidas humanas. Seguramente se dirá que hay nuevos materiales que soportan la acción corrosiva; sin embargo, podemos decir que habrá nuevos materiales pero también nuevos ambientes que darán lugar a fenómenos de corrosión conocidos o nuevos que exigirán nuevas investigaciones

intergranular, en	económico a las	nuevos avances o desarrollo	
particular los	investigaciones en	de nuevos materiales en un	
aceros	este campo	25 a 30% aproximadamente.	
inoxidables	quedará	Más aún, queremos que	
austeníticos	plenamente	empresarios, profesionales,	
que, cuando son	justificado.	estudiantes y público en	
tratados	'	general sepan que tenemos	
térmicamente		un enemigo común que se	
de un modo		llama corrosión, contra el cual	
inadecuado,		debemos luchar para que los	
también sufren		procesos sean más limpios,	
corrosión por		más eficientes, con mayor	
picaduras y en		rentabilidad y así todos	
resquicios.		podamos tener una vida sana	
		en un medio cada vez más	
		limpio.	
		impo.	

7. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Baltazar M., Almeraya F., Nieves D. Borunda A. Maldonado E. Ortiz A.	2007	Corrosión del acero inoxidable 304 como refuerzo en concreto expuesto a cloruros y sulfatos	Scientia et Technica Año XIII, Universidad Tecnológica de Pereira. ISSN 0122-1701 Colombia.	No 36, Septiembre de 2007.

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos éticos	Resultados	Conclusión
Cuantitativo	Acero inoxidable 304	Los especímenes		Especímenes expuestos a cloruros. Potenciales de	Los potenciales de corrosión de
Experimental	inoxidable 304 y acero 1018, embebidos en especímenes de concreto elaborados en base a las normas ASTM C470-87 y C192-81.	dos medios agresivos solución al 3.5 % NaCl y al 3.5% Na2SO4, por un periodo de 66 semanas, para llevar		Corrosión. El monitoreo de potencial de media celda en los especímenes fue en la zona del centro como lo recomienda la literatura. La interpretación de los valores de los potenciales de corrosión fue en base la Norma ASTM C876-91. El comportamiento de los potenciales de corrosión de los diferentes especímenes con acero inoxidable, varían entre -200 y -250 mV, que de	los especímenes de relación a/c=0.65 con acero 1018 y expuestos a cloruros presentan 90% de probabilidad de corrosión. La velocidad de corrosión en los especímenes con acero 1018 y expuestos a cloruros presentaron valores de cinética de corrosión en los de relación a/c = 0.65 de hasta 150 veces mayores que los de los especímenes con acero 304, y de 30 veces en los de relación 0.45.

como la	acuerdo a la norma de la	
resistencia de un	ASTM 876 nos indica que se	
espécimen a la oxidación	tiene una incertidumbre de que	
durante la aplicación de un	se esté presentando corrosión,	
potencial externo,	esto se debe a la película pasiva	
	estable de gran resistencia que	
	se forma gracias a la presencia	
	del cromo principalmente.	
	En los especímenes con acero	
	1018 se tiene una influencia	
	importante de la relación	
	agua/cemento teniéndose para	
	los especímenes de 0.65, que	
	con el paso del tiempo su	
	tendencia es de ser más	
	negativos lo que indica que se	
	tiene una probabilidad de 90%	
	de que se esté corroyendo el	
	acero.	
	autiu.	

8. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
M. Bazaldúa- Domínguez1, P. Meraz- Fernandez y V. Orozco- Carmona	2011	Determinación del grado de corrosión generado por solución superoxidada sobre materiales quirúrgicos.	Artículo científico, presentación en cd 4 -524 cipitech 2011 ISBN 978 – 1 – 4276 – 4803 – 7	4º Congreso Internacional de Investigación Nuevo Casas Grandes, México 27, 28 y 29 de Septiembre de 2011

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos éticos	Resultados	Conclusión
Cuantitativo	Metales y aleaciones con	Se emplearon tres tipos de materiales metálicos como	No aplica	Al determinar el grado de corrosión generado por solución	Las curvas de polarización cíclicas, obtenidas al evaluar la
Experimental	múltiples aplicaciones en ortopedia, especialmente como materiales estructurales en dispositivos para la fijación de fracturas y en sustitución total o parcial de articulaciones,	electrodos de trabajo, acero inoxidable (SS) 304, 316 y Aleación Ti6Al4V, montando en resina epoxica. Electrolitos: agua destilada, agua oxigenada con pH de 4.48 al 6% grado quirúrgico y agua superoxidada con pH 7		superoxidada sobre instrumentos quirúrgicos, se presentan las curvas de polarización cíclica. Resultados de exponer la aleación Ti6Al4V en las tres soluciones en estudio (agua destilada, agua oxigenada y agua superoxidada), donde se aprecia que no se generó una histéresis típica de un mecanismo de corrosión, por lo tanto, el mecanismo de corrosión presente en dicha aleación es del tipo generalizada. En cambio, los	aleación de Ti6Al4V en los tres medios de exposición, son típicas de un mecanismo generalizado, lo cual, se ratificó mediante MEB. • Por el contrario, las curvas de polarización cíclica al evaluar

pero también	Preparación de celda	aceros inoxidables 316 y 314 las	expuesta en las tres aleaciones,
para la	electroquímica	curvas de polarización cíclica	lo cual, nos permite concluir,
fabricación de	La celda electroquímica	mostraron la generación de la	que dicha solución tiene una
instrumental.	consistió en un arreglo	histéresis típica de un	ventaja adicional sobre las otras
	experimental de tres	mecanismo de corrosión	soluciones empleadas como
	electrodos, empleando	localizado (picaduras).	desinfectantes, ya que tiene
	para ello un electrodo de		mejores propiedades
	calomel saturado (ECS)		desinfectantes y presenta una
	como electrodo de		menor cinética de corrosión
	referencia, un electrodo de		sobres las aleaciones en la cual
	platino de alta pureza		será empleada.
	como contra electrodo		
	y como electrodo de		
	trabajo cada uno de los		
	electrodos preparados		
	deTi6Al4V, SS 316 y SS		
	,		

9. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Jairo Ruiz, Carlos Mario Parra, Carlos Mario Bustamante, Elkin Vélez, Luis Alfonso Rivera	2003	Modelamiento del proceso de recubrimiento de instrumental quirúrgico con cromoduro		Diciembre, 2003

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos éticos	Resultados	Conclusión
Cuantitativo Experimental	Instrumental quirúrgico para el análisis del brillo y la dureza de las Pinzas quirúrgicas suministradas por el Hospital San Vicente de Paúl y el Hospital General, de acero inoxidable martensíticos con diferentes formas de corrosión como manchas, rayas y marcas que, en su conjunto le daban un color mate al instrumental		No aplica	Para el recubrimiento de instrumental quirúrgico con cromoduro, la variable respuesta básica para el estudio fue el espesor, cuyo valor se determinó para cada pinza como el mínimo de los valores medidos en tres puntos definidos de la pieza. Dichos puntos fueron medidos siempre en la misma zona para cada pieza. Los portagujas recuperados mediante el recubrimiento de cromoduro presentaron un muy buen brillo y acabado superficial.	Todas las muestras recuperadas mediante el recubrimiento con cromoduro, al pulirse mecánicamente, presentan visualmente alto brillo, igual al que presenta el instrumental de acero inoxidable nuevo. Se obtuvieron resultados positivos con respecto a la viabilidad técnica de recubrir el acero inoxidable martensítico

Este material fue sometido a co	on capas delgadas de
esterilización en vapor a una cr	romoduro, que
temperatura de 134 °C, trece pr	resentaron buen
minutos de exposición, veinte de la	cabado superficial,
secado y a una presión de 136 bu	
psi. Dicha prueba fue realizada du	•
en la unidad de esterilización del	
Hospital San Vicente de Paúl, de	
Medellín, Colombia. Los	
expertos en el tema resaltaron el	
excelente comportamiento del	
instrumento a dicho proceso.	

10. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
L. Pazos, M. Flores Martínez. E. De las Heras, JJ. García Pérez	2010	Comportamiento al desgaste y a la corrosión de un acero inoxidable martensítico con recubrimiento mono y multicapa para uso en herramental quirúrgico	2010. Chile	Año 2010 2 a 5 de Noviembre de 2010, Viña del Mar,

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos éticos	Resultados	Conclusión
Cuantitativo	Acero inoxidable martensítico	Se realizaron ensayos de		Las condiciones de superficies de los aceros presentaron	Las muestras con recubrimiento presentaron un mejor
Experimental	Muestras de acero planas de 25x32x6 mm, con recubrimiento monocapa y multicapa, y otro grupo de muestras de acero pulidas sin recubrimiento como referencia	desgaste del tipo reciprocante utilizando un microtribometro. La contraparte utilizada fueron bolillas de acero AISI 440C.		comportamientos diferentes, en las curvas de coeficiente de fricción (CoF). Las muestras pulidas sin recubrimiento presentaron un CoF más elevado, este hecho estaría asociado a la adhesión de partículas de desgaste. Para las muestras de acero con recubrimiento monocapa se obtuvo el menor valor de CoF, y las muestras con recubrimiento multicapa el CoF crece en forma escalonada, este crecimiento	comportamiento a la corrosión que la muestra sin recubrir. Sin embargo, en el caso de la multicapa se evidencia el crecimiento escalonado de la corriente, el cual estaría asociado al avance de la corrosión a través de diferentes capas del recubrimiento. La utilización de recubrimiento monocapa y multicapa disminuyó el coeficiente de fricción del acero inoxidable Martensítico M340. El aumento

Se utilizó una solución de Ringer	escalonado estaría asociado a deterioro progresivo de multicapa, debido a que la mayo capacidad de deformars plásticamente en relación con monocapa retrasaría el colaps de la multicapa. Las huellas de las muestra mono capa presentaron borde irregulares que indican desprendimiento	produjo cambios significativos en el coeficiente de fricción de las muestras recubiertas, sin embargo redujo el coeficiente de fricción de las muestras sin tratar. El mecanismo de desgaste más preponderante fue el de adhesión. Los recubrimientos monocapa y
	irregulares que indican	I recubrimientos monocapa y multicapa mejoraron significativamente el comportamiento a la corrosión

11. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Diego Arredondo Galleguillos	2006	Aplicación de métodos de asepsia y	Arredondo_dpdf	Diego Arredondo
		desinfección en la práctica de la radiología intraoral		Galleguillos

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos ético	Resultados	Conclusión
Cuantitativo Transversal	Primera toma radiográfica en cada uno de los 10 pacientes, el radiólogo utilizó guantes de examen para manipular la película radiográfica intraoral, el cabezal del sillón y el cabezal del equipo de rayos y el paciente afirmó la película con un dedo. Se obtuvo una muestra microbiológica de la película radiográfica intraoral.	Este trabajo de investigación se realizó en el servicio de Radiología de la Facultad de Odontología de la Universidad de Chile, en un box equipado con un equipo de rayos Planmeca Prostyleintra con cronorruptor de botonera digital, tubo de rayos X-ray tooth Toshiba D-0711SD punto focal 0.7mm., 8mA y 70KV, un sillón Ritter con cabecera escandinava. Se	Consentimiento informado	Los resultados obtenidos, demuestran que es posible disminuir de forma significativa, la carga microbiana en el proceso de toma radiográfica aplicando métodos de control de infecciones como: barreras de protección, métodos efectivos de limpieza y desinfección, además de la aplicación de las precauciones estándar. Tomando como marco teórico que la limpieza es la remoción mecánica de toda materia extraña en el ambiente, en superficies y en objetos. Normalmente se usa agua y detergente para este proceso. Al utilizar estos elementos para limpiar es necesario considerar la calidad del agua, pues es preferible utilizar agua blanda o efectuar el último enjuague con agua destilada o desmineralizada, pues el agua dura puede dañar el material. Asimismo los detergentes	A la luz de los resultados obtenidos en la presente investigación, se puede afirmar que la aplicación de barreras de desinfección y antisepsia reduce significativamente la cantidad de microorganismos patógenos ó potencialmente patógenos en el proceso de toma radiográfica intraoral

	utilizó la máquina de	utilizados deben ser capaces de
La muestra	revelado del	remover los restos orgánicos e
consistió en 10	servicio, Air	inorgánicos, no producir daños en los
pacientes que	Technics A/T2000	equipos, no dejar residuos y no ser
asistieron al	plus.	tóxicos para el personal que lo
servicio de		manipula.
Radiología una		
semana al azar del		
segundo semestre		
del año 2005 con		
indicación de una		
radiografía		
intraoral.		

12. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
María Cristina Sánchez Melchor	2014	Evaluación de la limpieza y desinfección en endoscopia digestiva en los Centros públicos de la	Ciencia y enfermería Google académico	
		comunidad de Madrid.		

Tipo y Diseño de Investigación	Población y Muestra	Instrumentos	Aspectos ético	Resultados	Conclusión
Cuantitativo Transversal	Servicios de endoscopia digestiva de los hospitales y centros sanitarios públicos de la comunidad de Madrid 19 centros de un listado, nombre del responsable del servicio de endoscopia de cada uno de ellos	Cuestionario sobre el reprocesado de endoscopios, seleccionando	Se seleccionaron los centros luego de desarrollar los cuestionarios previos y con autorización de los responsables, para la toma de las muestras	Se destaca que el 35.3% de las unidades de endoscopia utilizan como solución de limpieza una mezcla de agua, jabón y desinfectante. Este procedimiento no se indica en ninguna de las guías y recomendaciones consultadas. El jabón utilizado es mayoritariamente de tipo enzimático, solo uno de los centros utiliza jabón no enzimático. Así mismo en la pag 42 describe la calidad de agua a utilizar, agua dura cuando contiene grandes cantidades de sales de calcio o magnesio, concentraciones altas de cloruro sódico u otros compuestos. A temperaturas altas, estas sales no son solubles y tienden a depositarse sobre las superficies en contacto con el agua. En el caso de los equipos de lavado, el depósito de estas sales sobre las válvulas o filtros contribuye a su deterioro prematuro y reduce la eficacia del equipo. La calidad del agua que se utiliza en la	desinfección de los endoscopios se realizó correctamente en un 82.4% de los centros públicos madrileños. El 12.5% de los centros no contempla el cepillado de los canales como parte del protocolo rutinario de limpieza de los endoscopios. Los motivos más frecuentes para el incumplimiento de las recomendaciones sobre limpieza y desinfección de los endoscopios son la incorrecta elaboración de la solución de limpieza y, la ausencia del cepillado de los canales. El 35.5% de los centros utilizan una solución de limpieza a base de agua, detergente y desinfectante, sin que haya podido determinarse

muestras de 40	limpieza del instrumental tiene una gran	
colonoscopios	influencia en el resultado final del proceso	
en tres puntos	y por ello existen diversos procesos que	
del	permiten mejorarla: filtrado, destilación,	
procedimiento	descalcificación del agua por intercambio	
de limpieza y	iónico, osmosis inversa.	
desinfección.		

DATOS DE LA PUBLICACIÓN

13. Autor	Año	Nombre de la Investigación	Revista donde se ubica la Publicación	Volumen y Numero
Deborah Violant Juan R. Mayoral Esmeralda Vélez Lluís Giner Tarrida	Retrieved on: 15 April 2016	Efecto de un nuevo agente desinfectante libre de aldehídos sobre la superficie de instrumentos de acero inoxidable	<u> </u>	

CONTENIDO DE LA PUBLICACIÓN

Tipo y Diseño de Investigació n	Población y Muestra	Instrumentos	Aspectos éticos	Resultados	Conclusión
Cuantitativo	Siete instrumentos de uso habitual en la clínica dental	Fueron divididos en "grupo experimental" y		Los instrumentos del grupo control y con una aleación	El detergente libre de aldehídos y fenoles
Transversal	de acero inoxidable de dos calidades distintas y que no habían sido utilizados previamente. Como control se utilizó agua destilada. El grupo de instrumentos "A" fue el considerado de baja calidad y el grupo "B" fue el considerado como de calidad alta.	"grupo control". El grupo experimental fue sumergido en un detergente libre de aldehídos y fenoles compuesto por cloruro de didecildimetilamonio 3.5%, tensoactivos secuestrantes El detergente fue diluido al 5% un volumen total de		de baja calidad mostraron mayor corrosión de la superficie al final del estudio, al utilizar un nuevo agente desinfectante libre de aldehídos sobre la superficie de instrumentos de acero inoxidable	deteriora mínimamente la superficie de instrumentos de acero inoxidable al cabo de 800 ciclos, mostrando ser un producto de elección para la desinfección de instrumentos odontológicos con ultrasonidos

4 litros	de agua
destilada.	
En grupo	o control se
realizó	el mismo
procedimier	ento del grupo
	ital utilizando
como solu	lución de uso
agua	destilada
únicamente	e.

3.2 Tablas 2: Resumen de estudios sobre corrosión de los instrumentos quirúrgicos por el uso de agua común vs agua destilada.

Diseño de estudio / Titulo	Conclusiones	Calidad de evidencias (según sistema Grade)	Fuerza de recomen dación	País
Experimental "Estudio de la corrosión de una aleación Ti6Al4V utilizada como biomaterial".	El mecanismo de corrosión observado en las muestras de aleación Ti6Al4V corresponde a un ataque preferencial de la fase, manifestándose como picaduras y corrosión micro galvánica, debido a la microestructura bifásica de la aleación, lo cual generó una diferencia de potencial entre las fases presentes. Las técnicas electroquímicas de polarización estudiadas permiten inferir la tendencia corrosiva del material, siendo mayor con el incremento del tiempo de inmersión. La película pasiva de la aleación Ti6Al4V, tiende a ser inestable en presencia de iones cloruros, incidiendo en la disolución preferencial del vanadio. La aleación Ti6Al4V forma agregados de apatita en su superficie por interacción de la película de óxido de titanio con la solución de fluido corporal simulado (FCS), durante largos periodos de exposición.	Alta	Alta	Venezuela
Experimental "Efecto del medio en el comportamiento al desgaste de aceros inoxidables"	El medio influye sobre la cinética de desgaste: con agua se han encontrado valores de tasa normalizada de desgaste menores que con aire. La principal razón es el papel lubricante del agua destilada Se ha observado que la naturaleza del acero afecta el comportamiento al desgaste. La ductilidad y la capacidad para formar la capa de óxido son propiedades que influyen. Por ello el inoxidable ferríticos es el acero que	Alta	Alta	España

	presenta mayor desgaste en estas condiciones de ensayo. En el mismo sentido, se ha determinado que el agua genera una formación de capa de óxido a una velocidad más rápida. Las limas de acero inoxidable no			
Experimental "Estudio de la superficie de limas de endodoncia sometidas a desinfección química mediante microscopia electrónica de barrido".	sufren corrosión en su superficie en las circunstancias en las que ha sido realizado este estudio, aunque es posible que el resultado varíe si estas limas son sometidas a un mayor número de ciclos y a un mayor tiempo de contacto con los desinfectantes utilizados. Es posible que únicamente, tal como indican Neal y cols.w, aparezca corrosión si las limas se dejan sin lavar y sin secar.	Alta	Alta	España
Experimental "Materiales: La corrosión, su tradición y alcances"	Se pueden establecer variados criterios para clasificar los diferentes modos de corrosión que se presentan. Las informaciones de muchos investigadores señalan que por lo menos hay 16 mecanismos por los que la corrosión nos ataca. b. La corrosión llega a causar pérdidas en muchos productos que se han obtenido con mucho esfuerzo. c. No olvidar que la corrosión causa pérdidas humanas. f. Seguramente se dirá que hay nuevos materiales que soportan la acción corrosiva; sin embargo, podemos decir que habrá nuevos materiales pero también nuevos ambientes que darán lugar a fenómenos de corrosión conocidos o nuevos que exigirán nuevas investigaciones.	Alta	Alta	Perú
Experimental "Corrosión del acero inoxidable 304 como refuerzo en concreto expuesto a cloruros y sulfatos"	Los potenciales de corrosión de los especímenes de relación a/c=0.65 con acero 1018 y expuestos a cloruros presentan 90% de probabilidad de corrosión. La velocidad de corrosión en los especímenes con acero 1018 y expuestos a cloruros presentaron valores de cinética de corrosión en los de relación a/c = 0.65 de hasta 150 veces mayores que los de los especímenes con acero 304, y de 30 veces en los de relación 0.45.	Alta	Alta	Colombia

Experimental "Determinación del grado de corrosión generado por solución superoxidada sobre materiales quirúrgicos".	Las curvas de polarización cíclicas, obtenidas al evaluar la aleación de Ti6Al4V en los tres medios de exposición, son típicas de un mecanismo generalizado, lo cual, se ratificó mediante MEB. Por el contrario, las curvas de polarización cíclica al evaluar los SS 304 y 316, presentan una histéresis típica de un mecanismo de corrosión localizada (picaduras). El agua superoxidada, es la solución que genera la menor cinética de corrosión al ser expuesta en las tres aleaciones, lo cual, nos permite concluir, que dicha solución tiene una ventaja adicional sobre las otras soluciones empleadas como desinfectantes, ya que tiene mejores propiedades desinfectantes y presenta una menor cinética de corrosión sobres las aleaciones en la cual será empleada.	Alta	Alta	México
Experimental "Modelamiento del proceso de recubrimiento de instrumental quirúrgico con cromoduro"	Todas las muestras recuperadas mediante el recubrimiento con cromoduro, al pulirse mecánicamente, presentan visualmente alto brillo, igual al que presenta el instrumental de acero inoxidable nuevo. Se obtuvieron resultados positivos con respecto a la viabilidad técnica de recubrir el acero inoxidable martensítico con capas delgadas de cromoduro, que presentaron buen acabado superficial, buen brillo y buena dureza.	Alta	Alta	Colombia
Experimental Comportamiento al desgaste y a la corrosión de un acero inoxidable martensítico con recubrimiento mono y multicapa para uso en herramental quirúrgico	Las muestras con recubrimiento presentaron un mejor comportamiento a la corrosión que la muestra sin recubrir. Sin embargo, en el caso de la multicapa se evidencia el crecimiento escalonado de la corriente, el cual estaría asociado al avance de la corrosión a través de diferentes capas del recubrimiento. La utilización de recubrimiento monocapa y multicapa disminuyó el coeficiente de fricción del acero inoxidable Martensítico M340. El aumento de la carga de ensayo no produjo cambios significativos en el coeficiente de fricción de las	Alta	Alta	Chile

	muestras recubiertas, sin embargo redujo el coeficiente de fricción de las muestras sin tratar. El mecanismo de desgaste más preponderante fue el de adhesión. Los recubrimientos monocapa y multicapa mejoraron significativamente el comportamiento a la corrosión del acero inoxidable.			
Experimental "Efecto de un nuevo agente desinfectante libre de aldehídos sobre la superficie de instrumentos de acero inoxidable"	El detergente libre de aldehídos y fenoles deteriora mínimamente la superficie de instrumentos de acero inoxidable al cabo de 800 ciclos, mostrando ser un producto de elección para la desinfección de instrumentos odontológicos con ultrasonidos	Alta	Alta	España
Transversal "Aplicación de métodos de asepsia y desinfección en la práctica de la radiología intraoral"	A la luz de los resultados obtenidos en la presente investigación, se puede afirmar que la aplicación de barreras de desinfección y antisepsia reduce significativamente la cantidad de microorganismos patógenos o potencialmente patógenos en el proceso de toma radiográfica intraoral	Moderada	Moderada	Chile
Transversal "Evaluación de la limpieza y desinfección en endoscopia digestiva en los Centros públicos de la comunidad de Madrid".	El proceso de limpieza y desinfección de los endoscopios se realizó correctamente en un 82.4% de los centros públicos madrileños. El 12.5% de los centros no contempla el cepillado de los canales como parte del protocolo rutinario de limpieza de los endoscopios. Los motivos más frecuentes para el incumplimiento de las recomendaciones sobre limpieza y desinfección de los endoscopios son la incorrecta elaboración de la solución de limpieza y, la ausencia del cepillado de los canales. El 35.5% de los centros utilizan una solución de limpieza a base de agua, detergente y desinfectante, sin que haya podido determinarse el origen de esta recomendación.	Moderada	Moderada	España
Transversal "Preparación de	Aspecto de suma importancia es la existencia de rutinas escritas en las unidades, lo que permite a los funcionarios adoptar conductas	Moderada	Moderada	Brasil

materiales en salas de depósito instrumental y de material residual SDI: una reflexión sobre esta práctica"	normalizadas para realizar las etapas de los procedimientos de limpieza, inspección y desinfección. Vigilar el proceso de limpieza y principalmente desinfección de las salas de depósito de instrumental y material residual.			
Transversal "Manual de instrumental quirúrgico"	Utilizar desinfectantes y soluciones esterilizantes que garanticen una desinfección y esterilización adecuada pero que no causen corrosión al instrumental. Un producto que cubre los requisitos de la familia de antisépticos clorados es un cloroxidante electrolítico.	Moderada	Moderada	Cuba

CAPITULO IV: DISCUSIÓN

El presente estudio tuvo como objetivo general, determinar si la corrosión de los instrumentos quirúrgicos, es producida por el uso de agua común vs agua destilada, para lo cual se realizaron revisiones sistemáticas de 13 artículos científicos de las diferentes paginas consultadas, que correspondieron a 13 investigaciones desarrolladas en diferentes países. Los resultados obtenidos, muestran, que del total de 13 artículos revisados, el 69% de estudios de diseño experimental, nos muestran como resultados, fenómenos de corrosión, ocasionados por las diferentes soluciones empleadas, al someter a los materiales a un procedimiento especial para evaluar el comportamiento de los aceros. El medio fue, agua común, agua dura, agua combinada con cloruros, y una solución de ringer. Generalmente, el peligro de una corrosión provocada por cloruro se presenta, al aumentar el contenido de cloruro, al subir la temperatura, al reducirse el pH, al prolongarse el tiempo de aplicación, al no secarse bien el instrumental, y con la concentración de sales debida al secado.(2) El agua tiene diversas funciones en el proceso de tratamiento de los instrumentos, como: disolvente para materiales de limpieza y otros materiales de tratamiento, sirve de transmisión mecánica y térmica a la superficie de los objetos lavados, disolución de residuos solubles en

agua, lavado de soluciones de limpieza y otras de tratamiento, así como también empleo del agua en la esterilización por vapor. (2)

El tratamiento de productos sanitarios, entre ellos los instrumentos quirúrgicos, es de gran importancia para la seguridad del paciente y usuarios, nos podrían conducir a complicaciones que se pueden evitar. La implementación entonces de un buen tratamiento se debe considerar ya al desarrollar un producto sanitario, así como también la funcionalidad. A menudo se debe alojar el mecanismo necesario en el menor espacio para afectar lo menos posible al paciente. (2)

La selección de los aceros inoxidables, martensíticos, austeníticos y ferríticos, se centra en su resistencia a la corrosión, características de fabricación, disponibilidad, propiedades mecánicas a distintas temperaturas y costos. De todas maneras, la resistencia a la corrosión y las propiedades mecánicas son por lo general los factores más importantes a la hora de la selección de dichos materiales para una determinada aplicación. Estas normas y cuidados especiales también son válidos para el instrumental dental, ya que comprende una gran variedad de instrumentos fabricados con materiales muy diversos.

I. Pazos y otros, (3) en su estudio "comportamiento al desgaste y a la corrosión de un acero inoxidable martensítico", considera que los aceros destinados a la fabricación de herramental quirúrgico deben satisfacer, no solo los esfuerzos mecánicos a los que se encuentran sometidos, sino también responder a las características indispensables de un material, tales como biocompatibilidad, resistencia a la corrosión, entre otros. Aspecto que igualmente consideró M. Basaldúa (4), al evaluar los mecanismos de corrosión en los aceros inoxidables al ser expuesto a solución de agua superoxidada, agua oxigenada y agua destilada. Encontrando que la primera de ellas es la que ofrece menor cinética de corrosión.

El 31% de estudios revisados, de diseño transversal, nos muestra el comportamiento de los materiales sometidos a los diferentes procedimientos de limpieza, desinfección y esterilización, y si estos han sido desarrollados con eficacia, siguiendo una guía o protocolo, en este porcentaje se utilizó el agua común, que utilizado para la preparación de una solución detersiva y/o desinfectante se evidencia, que deteriora el material, ocasionando fallas en los instrumentos, favoreciendo la corrosión. La calidad del agua utilizada para el tratamiento del instrumental es de una importancia considerable para conservar el valor del mismo. Así mismo D. Violant, y otros (5), investigaron el efecto corrosivo de una dilución de detergente y desinfectante disuelta en agua destilada, al someter en inmersión instrumentos de acero inoxidable, encontró un bajo efecto corrosivo sobre la superficie de instrumentos de acero inoxidable.

Todas las fallas por corrosión obligan a la desincorporación del instrumento ocasionando pérdidas a la institución, y disminución de probabilidades para el desarrollo de procedimientos en donde determinados instrumentos son necesarios. En este sentido Ruiz, J., Parra, C., Bustamante, E., y Rivera L., (6) trabajaron con pinzas quirúrgicas suministradas por el Hospital San Vicente de Paúl, de acero inoxidable, martensíticos, con diferentes formas de corrosión, como manchas, rayas y marcas que, en su conjunto, le daban un color mate al instrumental. Todas las muestras fueron recuperadas mediante el recubrimiento con cromoduro, luego de pulirse mecánicamente, presentaron visualmente alto brillo, igual al que presenta el instrumental de acero inoxidable nuevo.

En menor porcentaje, se encontraron estudios en donde se utilizó agua destilada como medio de investigación de los materiales sometidos a diferentes procedimientos ya sea de limpieza o experimentales. La prueba de hervido en agua destilada es realizada para evaluar la

resistencia a la corrosión, que poseen los instrumentales quirúrgicos de acero inoxidable bajo ciertas condiciones: el instrumental se lava previamente con jabón neutro y agua a temperatura entre 35 a 40 °C, posteriormente, se enjuaga con abundante agua destilada a temperatura ambiente y se seca. A continuación se hierve en un recipiente de vidrio con agua destilada durante 30 minutos y después se deja sumergido durante 24 horas en la misma solución. Transcurrido este tiempo, se saca el instrumental y se seca a temperatura ambiente para su inspección. Resultados: los instrumentos no deben presentar a simple vista indicios de corrosión sobre su superficie pulida. (7).

Como se puede apreciar e inferir a través de la revisión bibliográfica realizada, el agua común produce corrosión en los instrumentos quirúrgicos.

CAPÍTULO V: CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

- 1. De los 13 artículos revisados, el 69% experimental, con calidad de evidencia alta, muestran como resultado, presencia de corrosión en los instrumentos quirúrgicos, al ser sometidos a tratamientos con agua dura, agua combinada con cloruros, y superoxidada. El 31%, de los artículos, son estudios relacionados con la eficacia del procedimiento de limpieza y desinfección, utilizando en las diluciones agua destilada, evitando la corrosión, favoreciendo la conservación adecuada del instrumento.
- 2. Los instrumentos de acero inoxidable martensíticos, austeníticos y ferríticos, no deberán someterse a procesos de limpieza, desinfección y esterilización, cuyo componente de dilución sea agua común, ni, sumergirse en una solución fisiológica de sal (solución NaCl), ya que el contacto prolongado con este tipo de agua y la inmersión en la solución, causará picaduras de corrosión.
- Se concluye que para evitar la corrosión y fallas en los instrumentos quirúrgicos, se recomienda utilizar agua destilada, (desmineralizada), especialmente para el aclarado final, después de la limpieza y desinfección.

5.2 Recomendaciones

- Los instrumentos quirúrgicos requieren de ciertas recomendaciones para lograr controlar y preservar dichos instrumentos, con la finalidad de mantener la calidad en el funcionamiento de los mismos, y evitar la presencia de corrosión.
- 2. A las instituciones de salud, a los profesionales de ingeniería, y mantenimiento, se recomienda se proponga la instalación de una planta de tratamiento de agua, exclusiva para los servicios de esterilización, ya que es en este servicio donde se procesa todos los materiales medico quirúrgicos, hasta el de más alto costo.

REFERENCIAS BIBLIOGRÁFICAS

- Marin A. Clasificación de fallas en el instrumental quirúrgico y propuesta de gestión para su tratamiento. Sartenejas, Octubre de 2009
- 2. Blendin H., Biering H. El método correcto para el tratamiento de instrumentos. 9 edición 2009. www.a-k-i.org
- 3. Pazos I., Flores M., De las Heras E., Garcia J.J., Comprotamiento al desgaste y ala corrosion deun acero inoxidable martensítico con recubrimiento mono y ulticapa para uso en herramental quirúrgico. IBEROMET 11. Chile 2010.
- 4. Bazaldúa-Domínguez M., Meraz-Fernandez P., Orozco-Carmona V. Determinación del grado de corrosión generado por solución superoxidada sobre materiales quirúrgicos. 4º Congreso Internacional de Investigación Nuevo Casas Grandes, México 27, 28 y 29 de Septiembre de 2011
- 5. Violant D., Mayoral J., Giner L., Efecto de un nuevo agente desinfectante libre de aldehídos sobre la superficie de instrumentos de acero inoxidable. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/.
- Ruiz J., Parra C., Bustamante C., Vélez E., Rivera L.A. Modelamiento del proceso de recubrimiento de instrumental quirúrgico con cromoduro. Ingeniería No. 30. pp. 89-94. Diciembre, 2003.

- 7. Arredondo D. Aplicación de métodos de asepsia y desinfección en la práctica de la radiología intraoral. Universidad de Chile, facultad de odontología. Santiago de Chile 2006.
- 8. Menjivar A., Tomasa I., Mejía P., Salinas C., Salinas M. Verificación del protocolo de desinfección y esterilización del instrumental utilizado en clínicas dentales de unidades de salud del área metropolitana de San Salvador establecido por el ministerio de salud. Marzo-mayo de 2007.
- Botero C., Lopes C., Uchikawa K., Andreoli T. Evaluación de la esterilidad del instrumental laparoscópico descartable reprocesado. Rev. Latino-Am. Enfermagem. 19 (2): [08 pantallas] mar-abr. 2011. www.eerp.usp.br/rlae.
- Oliveira, AC., Costa, TMPF, Rodrigues M., Oliveira de Paula, A., Azevedo, TC. Preparación de materiales en salas de depósito instrumental y de material residual: una reflexión sobre esta práctica.www.um.es/eglobal/. Junio 2009.
- G. Navarro., M. Mateos., J.L. Navarro., C. Canalda. Estudio de la superficie de limas de endodoncia sometidas a desinfección química mediante microscopia electrónica de barrido. ENDODONCIA Volumen 9 Número 2. Abril-junio 1991.
- 12. Bolívar, F.J., Sánchez, L., Hierro, M. P., Trilleros, J.A., Pérez, F.J. Aluminización de aceros ferríticos martensíticos (hcm-12a) mediante CVD-FBR Scientia Et Technica, vol. XIII, núm. 36, septiembre, 2007, pp. 619-624. Universidad Tecnológica de Pereira Pereira, Colombia Disponible: http://www.redalyc.org/articulo.oa.

- 13. González M. Análisis comparativo de la velocidad de corrosión por picadura de los aceros inoxidables austeníticos, bajo norma AISI, en diferentes tiempos de inmersión. Universidad tecnológica de Pereira. Facultad de ingeniería mecánica. 2015.
- 14. Yacono J.C., Llanos S. Materiales: La corrosión, su tradición y alcances. Revista del Instituto de investigación. Instituto de Investigación de la Facultad de Geología, Minas, Metalurgia y Ciencias Geográficas. Lima. Vol. 6, Nº 11, 2003.