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Abstract 

Objective:  To ensure the health of newborns, it is necessary to perform high-quality diagnostic tests. The TORCH 
panel is a set of tests that identifies infectious pathogens such as Toxoplasma (Toxo) and Cytomegalovirus (CMV) that 
are common in low-setting populations. We performed TORCH panel quality planning using six sigma in a reference 
laboratory at Peru.

Results:  This was a cross-sectional study. TORCH tests include Toxo, Rubella, CMV, and Herpes. We processed all 
samples by fourth-generation ELISA on the GEMINI XCR200 analyzer (Diatron, Budapest, Hungary). We obtained the 
imprecision from the annual data of the external quality assessment plan and we used the CLSI EP12-A3 guideline. In 
a total of 44,788 analyses, the average imprecision was 3.69 ± 1.47%, and CMV had lower imprecision (2.3 and 2.6% 
for IgM and IgG, respectively). Quality planning of the TORCH panel allowed estimating the sigma value that ranged 
from 4 to 10 (average 7 ± 2 sigma), where rubella had the highest values (10 for IgM and 8 for IgG) while HSV2 had the 
lowest values (4 for IgM and 5 for IgG). Our results suggest the optimal performance of half of the markers including 
Toxoplasma, Rubella, and CMV in the Peruvian population.

Keywords:  Six sigma, Toxoplasma, Quality assurance, Cytomegalovirus, Quality management, Enzyme-linked 
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Introduction
One of the main threats to neonatal and child health is 
the high rates of infections that cause 1.2 million deaths 
each year [1]. Therefore, one of the main guidelines of 
the Sustainable Development Goals for 2030 is to ensure 
neonatal health worldwide [2]. Consequently, it is neces-
sary to prevent infectious diseases, one of the most fre-
quent diseases affecting the children and neonates by 
improving detection and follow-up systems.

Globally, perinatal management is crucial to reduce 
neonatal morbidity and mortality levels, mainly in low-
income settings where sepsis is a common complication 
and infectious diseases reach their peak [3]. TORCH 
tests, an immunological screening panel to detect the 
main infectious agents associated with neonatal diseases, 
are used to diagnose infections [4]. The TORCH panel 
can be performed with immunological methods such as 
immunochromatography, enzyme-linked immunosorb-
ent assay (ELISA) or chemiluminescence immunoas-
say (CLIA) that show the presence of antibodies against 
TORCH infectious agents.

ELISA tests are the most widely used methods and 
probably have limitations since they cannot detect sig-
nificant losses (analytical sensitivity) and may interfere 
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with the final result causing false negatives [5]. For those 
reasons, it is necessary to develop verification studies 
and quality planning in qualitative immunological meth-
ods, estimating their suitability through the six sigma 
or OPSpecs charts as previously demonstrated [6–8]. 
In Peru, many clinical laboratories have limited access 
to quality management processes, performing few qual-
ity assessments in qualitative tests such as ELISA tests, 
despite the studies that propose quality assessment 
schemes for ELISA [5].

In this cross-sectional study, we aim to perform 
TORCH panel quality planning using six sigma in Peru. 
With fewer studies focusing on developing quality 
assessments in qualitative tests, our purpose is to know 
the level of performance and compliance with quality 
requirements.

Main text
Study design and TORCH panel
We carried out this observational cross-sectional and sin-
gle-centred study at the Suiza Lab in Lima, Peru. Accord-
ing to the objectives of this study we used TORCH tests 
for Toxoplasma, Rubella, Cytomegalovirus, and Herpes 
(all from Diatron, Budapest, Hungary). For all infec-
tious markers, IgG and IgM were determined. Following 
the manufacturer’s specifications, the GEMINI XCR200 
automated kit (Diatron, Budapest, Hungary) processed 
the samples by a fourth-generation qualitative ELISA. 
This equipment has a photometric reading range of 0–3.0 
absorbance (Abs) (range 400–700 nm), an accuracy of 1% 
CV at 1.0 Abs, and linearity of 0–2000 Abs. The incuba-
tor features an integral wash system with a capacity of 
three washes and an accuracy of 10% CV at 300 μl.

Quality analytic requirements
For each enzyme-linked immunosorbent assay, we veri-
fied calibration using linearity as previously described [6]. 
Data were collected for 2019 to determine the minimum 
acceptable concentrations measured in Abs for each 
marker following previous protocols [5, 6]. We assessed 
the correlation between the absorbance of the samples 
and the cut-off for each test, following the recommenda-
tions of the CLSI EP12-A3 guideline [9]. The cut-off was 
the measure derived from the results of three negative 
calibrators plus a fixed value. From this correlation, we 
estimated the quality requirements for each marker.

Quality planning and data analysis
We developed quality planning according to the previ-
ous steps of defining the quality requirements. The bias 
was not evaluated and had a value of 0 for all the TORCH 
panels [10]. The imprecision of each test was estimated 
from the annual evaluation values of the External Quality 

Assessment Program in which Suiza Lab participates. 
From these data established for each marker, the sigma 
value of each test was estimated using the formula:

The QC candidate selection procedure was performed 
under the Westgard rules: 12.5s, 13s, 13.5s, 22.5s, 13s/22s, 
13.5s/22.5s y 13.5s/22.5s/R.4s [5, 11]. The sigma metric 
analysis was created in SPSS version 25.0 (IBM, Armonk, 
USA) for Windows. The estimation of the statistical control 
rules according to the sigma value was performed using the 
sigma charts following previous recommendations [12]. 
This selection was developed considering the best fit for 
the probability of error detection (Ped) and the probability 
of false rejection (Pfr) of each TORCH’s panel marker.

Results
We developed the quality planning for eight TORCH panel 
markers [Toxoplasma gondii (Toxo), Rubella, Cytomegalo-
virus (CMV) and Herpes Virus 1 (HSV1) and HSV2], and 
a total of 44,788 analyses were reviewed. The minimum 
acceptable concentration was obtained, finding an average 
of 20.8 ± 7.4% for the quality requirements for each marker. 
The imprecision analysis was assessed by intra-assay CV% 
for each infectious marker. In addition, an average impre-
cision of 3.69 ± 1.47% was found. Our results indicate that 
CMV had lower imprecision (2.3% for IgM and 2.6% for 
IgG) while Toxo had a 5% imprecision and 5.38% for Toxo 
IgM and IgG, respectively.

Quality planning of the TORCH panel allowed estimat-
ing the sigma value that ranged from 4 to 10, where rubella 
had the highest values (10 for IgM and 8 for IgG) while 
HSV2 had the lowest values (4 for IgM and 5 for IgG). 
These results appear in Table  1. Fifty percent of the tests 
had a sigma greater than 6 (average 7 ± 2 sigma).

The results shown in Fig.  1 reveal the selected control 
rules for the TORCH markers. For the two rubella markers, 
IgM of Toxo and CMV, and IgG of HSV1, control multi-
rules were chosen as 13s/22s that provided a 100% prob-
ability of detecting a critical loss of assay sensitivity (Pfr  
= 0.01). On the other hand, the IgM marker of HSV1 and 
HSV2 required a stricter multi-rule as 13.5s/22.5s/R.4s 
(Ped  = 1 and Pfr  = 0.03) to remain in control. None of the 
sigmas found invalidated the use of TORCH markers. The 
rule selection process is in Fig. 2.

Discussion
This study of quality planning in qualitative tests sug-
gest that 50% of markers from the TORCH panel had an 
optimal sigma (> 6) allow the selection and application of 
Westgard control rules in a reference laboratory in Peru.

Sigma =

Quality requirement − bias

imprecision
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The strengths of this study lie in being one of the first 
studies to apply the sigma metric to qualitative TORCH 
tests in Latin America. Also, this study used a qualita-
tive test analysis algorithm that demonstrated an optimal 
level of sigma performance of the TORCH panel. Know-
ing the efficiency of these markers is crucial to ensure 
neonatal health.

In order to control a test, it is necessary to apply statis-
tical control methods that allow the test to be maintained 
within typical values and to be able to demonstrate the 
alterations that diseases demand. Although this is the 
goal of quality control processes, planning is the pillar to 

organize all processes and ensure the quality of results 
[13, 14]. Modern practical concepts within analytical 
quality planning include using sigma metrics as a widely 
applicable method with a fast and simple calculation to 
organize quality axes in daily clinical practice.

Our findings demonstrated excellent performance for 
Rubella (> 6 sigma) and good performance for Toxo and 
CMV (5–< 6 sigma). These sigma results are substantially 
higher compared to two studies on thyroid hormones in 
the Indian population and transfusion viral infectious 
markers in the Mexican population that reported a sigma 
of  < 3 and  < 4, respectively [7, 8]. We recently demon-
strated following the same algorithm optimal sigma in 
2/7 infectious markers in a Peruvian blood bank [5]. Both 
previous results indicate the suitability of this quality 
planning method for qualitative tests.

Six sigma has demonstrated efficiency in the assess-
ment of clinical laboratory assays using software or 
manually with multiple institutional benefits [15–17]. In 
low-income settings laboratories, the implementation of 
efficient quality programs is so necessary because in Peru 
[18], several public and private laboratories work daily 
without establishing their quality limits, putting at risk 
medical decisions based on clinical analysis.

Although laboratory medicine has been transcenden-
tal for Peruvian medicine [19], there is no organized 
program for global quality assurance. Even the National 
Institute of Quality (INACAL) does not ensure the 
standardization of its tests. Therefore, the overall qual-
ity of the results issued is still unknown. Evaluations 

Table 1  Baseline results for the TORCH panel tests evaluated with the sigma metric

Abs absorbance (optical density δ)
a In %
b In %CV

TORCH panel Abs Cutt-off Quality requirementsa Imprecisionb Sigma ∆SE

Toxoplasma gondii

 IgM 0.007 0.005 28.6 5 6 4.06

 IgG 0.012 0.008 33.3 6.2 5 3.73

Rubella

 IgM 0.027 0.02 25.9 2.6 10 8.35

 IgG 0.219 0.177 19.2 2.4 8 6.35

Cytomegalovirus

 IgM 0.054 0.047 13 2.3 6 3.99

 IgG 0.022 0.019 13.6 2.6 5 3.59

Herpes simplex virus 1

 IgM 0.084 0.074 11.9 3 4 2.32

 IgG 0.023 0.019 17.4 2.7 6 4.79

Herpes simplex virus 2

 IgM 0.055 0.045 18.2 4.6 4 2.30

 IgG 0.015 0.011 26.7 5.5 5 3.20

TORCH panel Sigma Control rule

Toxo
IgM 13s/22s

IgG 13s/22s

Rubeola IgM 13s

IgG 13s

CMV IgM 13s/22s

IgG 13s/22s

HSV1
IgM 13.5s/22.5s/R.4s 

IgG 13s/22s

HSV2 IgM 13.5s/22.5s/R.4s 

IgG 13s/22s

Fig. 1  Westgard rules selected for TORCH panel control. For both IgM 
and IgG, sigma greater than 6 (blue box), sigma of 6 (green box) and 
sigma between 4 and 5 (yellow box) are shown
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under sigma metrics have an increasing impact on 
qualitative tests as a result of the studies and models 
that have gradually emerged in the last two decades 
[20]. Further studies are needed to scrutinize the qual-
ity assurance processes using sigma metrics in qualita-
tive tests.

In this study, the selection of control rules has been 
multi-rule as it is set out with a high Ped to assess 
both systematic and random error. We have been most 
insidious with markers of sigmas of 4 for IgM of HSV1 
and HSV2. Quality control, including the frequency of 
control and validation processes, the maintenance of 
equipment and staff training and participation in exter-
nal and internal quality control programs are necessary 
to keep these markers within quality standards [14, 20, 
21].

Conclusion
Quality planning of the TORCH panel in the Peruvian 
population demonstrated optimal performance of half of 
the markers, including Toxoplasma, Rubella and CMV. 
Using six sigma multi-rule controls were selected for 
HSV1 and HSV2 that had 4–5 sigma to maintain qual-
ity. This study continues the roadmap for quality assur-
ance of qualitative tests used in the clinical laboratory as 
routine tests; the development of quality planning pro-
cesses for qualitative tests should be a commitment for 
all health care institutions.

Limitation
The performance and sigma value of the TORCH panel 
could be affected by intra and inter-individual varia-
tions in the study subjects as the prevalence of infec-
tious markers and the kind of users of the Suiza Lab 
in Lima, Peru. In addition, this quality planning was 
conducted on fourth-generation GEMINI XCR200 
ELISA automated equipment; however, performance 
could vary with the CLIA test. Finally, due to its cross-
sectional design, it was impossible to establish causal 
relationships between the sigma values of panel perfor-
mance with some process features (i.e., pre-analytical 
errors, calibration frequency, participation in external 
quality programs).
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