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Abstract: In the last decade, the green synthesis of nanoparticles has had a prominent role in scientific
research for industrial and biomedical applications. In this current study, silver nitrate (AgNO3) was
reduced and stabilized with an aqueous extract of Thelypteris glandulosolanosa (Raqui-raqui), forming
silver nanoparticles (AgNPs-RR). UV-vis spectrophotometry, dynamic light scattering (DLS), and
scanning transmission electron microscopy (STEM) were utilized to analyze the structures of AgNPs-
RR. The results from this analysis showed a characteristic peak at 420 nm and a mean hydrodynamic
size equal to 39.16 nm, while the STEM revealed a size distribution of 6.64–51.00 nm with an average
diameter of 31.45 nm. Cellular cytotoxicity assays using MCF-7 (ATCC® HTB-22™, mammary gland
breast), A549 (ATCC® CCL-185, lung epithelial carcinoma), and L929 (ATCC® CCL-1, subcutaneous
connective tissue of Mus musculus) demonstrated over 42.70% of MCF-7, 59.24% of A549, and 8.80%
of L929 cells had cell death after 48 h showing that this nanoparticle is more selective to disrupt
neoplastic than non-cancerous cells and may be further developed into an effective strategy for breast
and lung cancer treatment. These results demonstrate that the nanoparticle surfaces developed are
complex, have lower contact angles, and have excellent scratch and wear resistance.

Keywords: Thelypteris glandulosolanosa; green synthesis; AgNPs; breast cancer; lung cancer; Raqui-Raqui

1. Introduction

Breast and lung cancers are amongst the most frequently diagnosed cancers world-
wide, causing over one million deaths annually [1–6]. Conventional cancer treatment
shows several limitations, including low or no specificity and low efficacy in discrimi-
nating between neoplastic and healthy cells [7]. The typical treatments most commonly
prescribed for these types of cancer include chemotherapy [8–10], which is administered
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to therapeutically control tumor growth and prolong patient survival [11]. However,
chemotherapy of anticancer drugs often have several limitations including vascular admin-
istration and extravasation, low or no oral bioavailability [12,13], rapid elimination [14],
adverse side effects [15–17], non-specific off target cytotoxicity [13,17–20], and multidrug
resistance [21,22].

For approximately 50 years, natural products have provided sources of chemothera-
peutic molecules in combating cancer [16,23–33]. The primary sources of these successful
compounds are plants from terrestrial environments [34,35]. Among several terrestrial
plants, the ferns are widely distributed in the world, mainly in India [36,37], Türkiye [38],
Nepal [39], Japan [40], and Peru [41–44], with some species having been used in food or folk
medicine for centuries [45]. Ferns comprise over 12,000 species spread among 250 different
genera [46]. The secondary metabolites of these ferns have been reported to have antioxi-
dant [47,48], anti-inflammatory [49,50], anticancer [49,51,52], and antimicrobial [53] activi-
ties. Among these ferns, Thelypteris torresiana contains the secondary metabolites protoapi-
genin [54], flavotorresin [55,56], 2′-hydroxy-2′,3′-dihydroprotoapigenone acetonide [53],
2′,6′-dimethoxy-tetrahydroprotoapigenone [54], and tetrahydroprotoapigenone [55] that
have antitumoral activity. Thelypteris torresiana produces protoapigenone [57–60] that has
been reported to exhibit significant antitumor activity against lung cancer cells (A549) [61],
liver cancer cells (Hep G2 and Hep 3B) [58], and breast cancer cells (MCF-7 [62] and MDA-
MB-231) [61] with IC50 values ranging from 0.23 to 3.88 µM [63,64]. The novel flavone
protoapigenone has been reported to decrease cancer cell viability through the induction of
apoptosis [65,66]. Furthermore, it has exhibited significant anticancer activity in a nude
mouse model explanted with human ovarian and prostate cancer cells [65–67].

Raqui-Raqui (Thelypteris glandulosolanosa) is a species of fern. A review of PubMed and
EMBASE does not demonstrate peer-reviewed publications with biomedical applications
to date. However, its similarity to Thelypteris torresiana would suggest that bioactive
compounds with potential anti-tumor activity are likely possible. Other ferns that belong
to the Thelypteris genus have been studied such as Thelypteris normalis that contains various
allelopathic compounds such as thelypterin A and B [68], the presence of the anthelmintic
and fungicide benzimidazole in Thelypteris felix-mas [69], and the content of various drimane-
type sesquiterpenoids in Thelypteris hispidula (Decne.) Reed [70,71]. The Thelypteris palustris
has been used for arsenic and other heavy metal uptake phytoremediation [72–75].

The potential of plant-based nanoparticles to treat different cancers is being exten-
sively studied and well reviewed [76] and the application of silver and gold nanoparticles
to treat cancers is a very active area of research investigations [76–80]. Recent studies
revealed that the use of the various metallic nanoparticles in medical sciences has various
applications, such as bio-imaging [81–84], bio-sensing [85–87], and drug delivery [88–90]
of nutraceuticals [23,26,91–99], and pharmaceuticals [17,20,31,100], which could affect
disposition [13,24,25,27–30,32,33,101–117], lymphatic transport [118], ophthalmic drug de-
livery [119], and toxicity [16,19,120–122]. Often, various chemical and physical methods
used for the preparation and syntheses of nanoparticles involve hazardous and toxic
chemicals [123], high-cost laboratory apparatus and infrastructure [124,125], as well as
capabilities of varying conditions such as temperature and high pressure [126]. Recently,
a new biological approach has been developed for nanoparticle synthesis, which utilizes
organic material to reduce bioactive agents isolated from plants [127–129]. These biotech-
nologies have low cost and are environmentally safe compared to other chemical and
physical processes [130].

Our research group has previously synthesized and characterized functionalized cot-
ton fabric with silver nanoparticles and carboxymethyl chitosan (AgNPs-CMC) [131,132].
The nanocomposite obtained from the complex [Ag (NH3)2] + was synthesized under
similar conditions and verified the formation of silver nanoparticles [131]. Our results, as
characterized by Dynamic Light Scattering (DLS) for AgNO3, revealed a monodisperse
distribution of the nanocomposite with an average hydrodynamic size of 166.7 nm [131].
Fourier Transformation Infrared spectroscopy (FT-IR) demonstrated the inhibition of spec-
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tral bands at 879 and 723 cm−1 indicating the presence of AgNPs in the nanocomposite [131].
Scanning electron microscopy (SEM) demonstrated that the silver nanoparticles were spher-
ical in shape and between 5 and 20 nm [131]. The functionalized fabric evaluated using
X-ray diffraction (XRD) analysis further confirmed the presence of silver nanoparticles [132].
Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) determined an
average concentration of 13.5 mg of silver per kg of functionalized fabric [132]. IR reported
that the functionalized fabric variation had a displaced peak of intensity at 1594.32 cm−1,
corresponding to carboxylate anions [132]. Similarly, Raman spectroscopy demonstrated
an intense peak at 1592.84 cm−1, which is characteristic and corresponds to the primary
amino group of carboxymethyl chitosan, and a peak at 1371.5 cm−1 corresponding to
the carboxylic anions [132]. Finally, the physical and mechanical tests of tensile strength
and color index were similar [132]. The functionalized fabric possessed antimicrobial and
antifungal properties against Escherichia coli, Staphylococcus aureus, Candida albicans, and
Aspergillus niger [133].

Our current study is novel as it constitutes the first study of a cost-effective, eco-
friendly, and convenient and facile protocol for green synthesis of AgNPs from Thelypteris
glandulosolanosa (Raqui-raqui) leaves extract. The green synthesis methodology has recently
received significant scientific attention because of its cost-effectiveness and because it
is an eco-friendly technique [134–137]. Organic synthesis using various plant extracts
has been previously reported in green synthesis, increasing the stability and efficiency
of these nanoparticles [138–140]. The properties and efficiency of silver nanoparticles
(AgNPs) depend on their morphological characteristics such as size, shape, surface area,
and the type of the plant used for the synthesis of these nanoparticles [56,141]. Silver
nanoparticles (AgNPs) synthesized by the biological method using Anthemis atropatana and
Albizia adianthifolia have been shown to exhibit antiproliferative effects against many cancer
cells [142–145]. However, the synthesis of silver nanoparticles using the aqueous extract of
Thelypteris glandulosolanosa has not been reported and published in the literature to the best
of our knowledge and review. Therefore, this study aimed to investigate the anti-cancer
activity of silver nanoparticles (AgNPs) green synthesized using the aqueous extract of the
Thelypteris glandulosolanosa on the MCF-7 breast cancer and A549 lung cancer cell lines.

The materials and methods are presented in Section 2. Section 3 provides the outcomes
and discussion. Conclusions are described in Section 4.

2. Materials and Methods
2.1. Reagents and Materials

The following reagents were used: silver nitrate (Merck Millipore, Burlington, MA,
USA) and methyl thiazolyl diphenyl-tetrazolium bromide (MTT) (Merck Millipore, Burling-
ton, MA, USA).

2.2. Equipment

UV-Visible spectrophotometer (Gold Spectrum lab 54S), dynamic light scattering (DLS,
Zetasizer Nano ZS), and scanning transmission electron microscopy (JEOL 2200FS STEM,
with hexapolar corrector CEOS).

2.3. Preparation of Plant Extract of Thelypteris glandulosolanosa (Raqui-Raqui), Green Synthesis,
and Purification of Silver Nanoparticles with Raqui-Raqui (AgNPs-RR)

Green leaves of Thelypteris glandulosolanosa were harvested from the district of Pocsi
located in the province and department of Arequipa, Peru, located at 3043 m elevation.
Leaves were washed three times using distilled water then washed with Milli-Q water.
All the water was removed, and the leaves were sprayed. The leaves sprayed (15 g) were
first boiled with 100 mL of Milli-Q water. After cooling to room temperature, the plant
extract was filtered through Whatman N◦1 filter paper (particle retention: 11 um; filtration
speed (Herzberg): 150 s; weight: 87 g/m2) followed by filtration in Millex-GP Syringe Filter
Unit, 0.22 µm (33 mm diameter sterile syringe filter with a 0.22 µm pore size hydrophilic
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Polyethersulfone membrane). After filtration, the extract was stored at 4 ◦C for further
experiments.

Silver nitrate solutions (0.1 M, AgNO3) were also freshly prepared in Milli-Q water
under dark conditions as previously described [146]. A range of concentrations of aqueous
leaf extracts (5.00, 2.00, 1.00, 0.5, 0.2, 0.1, and 0.05% w/v) were used for the reduction of
Ag into Ag0 state by mixing it with 0.5 mM AgNO3. These mixtures of plant extract and
AgNO3 were temperature controlled under 50 ◦C with continuous stirring. The reduction of
Ag ions in solution was monitored by a visible color change and periodic mixture sampling
by measuring in the UV-Visible Gold Spectrum lab 54S (λ 300 to 700 nm). The AgNPs-RR
were centrifuged at 12,500 rpm by 15 min, washed three times with Milli-Q water, and
finally washed with ethanol. The resulting AgNPs-RR were dried at 40 ◦C for 48 h.

2.4. Characterization of AgNPs-RR

The AgNPs-RR were characterized to identify their size, shape, surface area, and
dispersity. The techniques used in this study to characterize nanoparticles were UV-Visible
Spectra, dynamic light scattering (DLS), and scanning transmission electron microscopy
(STEM).

2.4.1. UV-Visible Spectra Analysis of AgNPs-RR

The reduction of Ag+ ions and formation of AgNPs-RR was monitored by measuring
the UV-Visible Spectra of the reaction through a spectrophotometer (Gold Spectrum lab
54S, Rinch Industrial Co., Shanghai, China) at the wavelength range of 300–700 nm (with
intervals of 1 nm) using quartz cuvettes. The progress in reducing Ag+ ions was monitored
by a periodical sampling of the reaction mixture at different reaction times between 0, 15,
30, 45, and 90 min.

2.4.2. DLS and STEM Analysis of AgNPs-RR

The distribution of the size of AgNPs-RR was analyzed by DLS (Zetasizer Nano ZS,
Malvern, Worcestershire, UK), and the size of nanoparticle was available in the scanning
transmission electron microscopy (JEOL 2200FS STEM, with hexapolar corrector CEOS
GmbH, Heidelberg, Germany). The STEM sample was prepared by a drop of reaction
sample on the copper-coated grid, and the excess of the solution was removed by drying
under a mercury lamp for 5 min as previously described [147].

2.5. Cytotoxicity Assay

MCF-7, A549, and L929 cells were seeded into 96-well plates (1 × 105 cells/well) and
incubated with various concentrations of silver nanoparticles (AgNPs) and silver nanopar-
ticles with Raqui-Raqui (AgNPs-RR) (100, 50, 25, 12.5, 6.25, 3.12, 1.56, and 0.78 µg/mL)
for 48 h at 37 ◦C in 5% CO2 humidified incubator. The cytotoxic activity was measured
by a methyl thiazolyl diphenyl-tetrazolium bromide (MTT) assay and cell viability per-
centage was calculated by optical density values subjected in the formula as previously
described [148,149].

2.6. Statistical Analysis

All data is represented as mean ± S.E. The statistical analysis was carried out with
GraphPad Version 6.01 using one-way ANOVA, statistical significance was examined by
Tukey’s post hoc with statistical significance at p-values < 0.05.

3. Results and Discussion
3.1. UV-Visible Spectra Analysis of AgNPs and AgNPs-RR

In this work, the green synthesis of AgNPs-RR was performed using different con-
centrations (5, 2, 1, 0.5, 0.2, 0.1, and 0.05%) of an aqueous extract of Thelypteris glandu-
losolanosa (Raqui-Raqui) in a 1:3 stochiometric relationship as a reduction agent for silver
nitrate (0.5 mM). When the colorless solution of AgNO3 was mixed with Raqui-Raqui,
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the bathochromic shift in wavelength maximum and change from colorless to intense
yellow indicated the synthesis of AgNPs-RR. UV-Visible further attested to the formation
of this nanoparticle, where the broad peak was observed between 420 and 450 nm. In our
results, maximum absorption was observed at 450 nm. Although, the spectra were regis-
tered at different reaction time intervals, a peak at 420 nm was revealed and reproducible
at 0.5% concentration, which suggested that the formed nanoparticles were stable and
polydispersed (Figure 1).
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Figure 1. Absorbance of AgNPs-RR.

Kumara Swamy et al. observed the formation of AgNPs at 1 h of incubation with an
aqueous extract of Leptadenia reticulata [150]. Furthermore, color changes of the reaction
mixture have been reported by a reduction of AgNO3 by the aqueous extract of Albizia
saman leaf [151]. Additionally, the extract of Eclipta alba leaves has been reported to reduce
silver ions to silver nanoparticles [152]. An increment of color intensity and surface plasmon
resonance (SPR) band sharpness have been reported to indicate the reduction of Ag+ into
Ag0 [153]. Additionally, to verify the formation of the AgNPs, the researchers carried
out an analysis in a UV-visible spectrophotometer [153]. The analysis showed maximum
absorbance close to 420 and 411 nm [153], which is similar to the results in our study. The
lack of similarity in observed bioreduction rates is likely a function of leaf extracts from
different plant species used as reducing and stabilizing agents. Therefore, the current
study contributes to identifying a potential new plant species for the synthesis of silver
nanoparticles such as Thelypteris glandulosolanosa (Raqui-Raqui).

3.2. DLS Analysis of AgNPs-RR

The dynamic light scattering (DLS) analysis was carried out in an aqueous solution
to determine the average hydrodynamic size of the AgNPs-RR. Figure 2 shows the size
distribution, with a Z-average (d.nm) of 48.11 and polydispersity of 0.472. A character-
istic bimodal distribution of nanoparticles is apparent which suggests the possibility of
agglomeration in solution (peak 2, 258.1 ± 133.5 nm). A more significant part of the extract
was incorporated in the AgNPs (peak 1, 39.16 ± 18.49 nm; peak 3, 7.99 ± 1.06 nm). The
area under the curve expresses the proportion of each fraction of AgNPs in the solution,
so fraction 1 corresponding to 39.16 ± 18.49 nm presents a more significant proportion of
the extract of Raqui-Raqui incorporated in the nanoparticles [154–156]. In contrast, Arya
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et al. reported that the average hydrodynamic size of the silver nanoparticles determined
by DLS is approximately 54.00 nm [153]. An index polydispersion of 0.2 was reported to
the AgNPs biosynthesized using bark extract of Prosopis juliflora indicating that they were
homogeneous in size [153]. The polydispersity index (PDI) is the ratio of mass average
molecular mass to the number average molecular mass (PDI = MnMw). PDI is used as
a measure of broadness of molecular weight distribution. The PDI is a measure of the
heterogeneity of a sample based on size. Polydispersity can occur due to size distribution
in a sample or agglomeration or aggregation of the sample during isolation or analysis. PDI
values < 0.05 are more common to monodisperse samples, while values > 0.7 are common
to a broad size (e.g., polydisperse) distribution of particles. The numerical value of PDI
ranges from 0.0 (for a perfectly uniform sample with respect to the particle size) to 1.0
(for a highly polydisperse sample with multiple particle size populations) [157]. The PDI
was determined to be 0.472. There is no general limit for acceptable polydispersity. In
Quality by Design for manufacturing, PDI may or may not be critical for a specification.
ISO silver nanoparticles suggest AgNPs with PDI less than 0.5 or 0.1 are considered to be
monodisperse and might have less aggregation. AgNPs with PDI > 0.7 or equal to 1 are
considered to be polydispersed and might aggregate.

Processes 2022, 10, x FOR PEER REVIEW 7 of 17 
 

 

 

 

 

Figure 2. Size distribution of AgNPs-RR using dynamic light scattering (DLS). 

3.3. STEM Analysis of AgNPs-RR 
Images of the surface size of the purified AgNPs-RR were examined using scanning 

transmission electron microscopy (STEM). For the analysis, the purified sample was 
dispersed by ultrasound in ethanol to form very dilute suspensions and then STEM 
images of the drops deposited on the coated copper grids carbon were obtained. The 
AgNPs-RR purified exhibited a quasi-spherical shape and showed aggregation and 
polydispersity (Figure 3A,B). The size distribution was analyzed using the software 
ImageJ. The nanoparticles presented a size distribution of 6.64–51.00 nm and an average 
diameter of 31.45 nm (Figure 3C). This result is similar and is in agreement with the 
analysis proposed by Jha et al., who reported that the biologically synthesized 
nanoparticles were spherical and their size ranged between 2 and 50 nm [160]. The 
average size of the AgNPs-RR analyzed by STEM was smaller than that analyzed by DLS 
(31.45 nm vs. 48.11 nm). STEM is a direct method of particle size analysis while DLS is an 
indirect method [154–156]. Differences in methods of analysis from the STEM samples 
which were evaluated from a dry non-hydrated state that are individually isolated, and 
the measurement obtained was the surface size of the nanoparticles; on the other hand, 
DLS evaluates the hydrodynamic size in suspension accounting for an increase in small 
mean particle size difference between characterization methodology. 

  

Figure 2. Size distribution of AgNPs-RR using dynamic light scattering (DLS).

Similarly, Remya et al. reported that the analysis in DLS of the nanoparticles biologi-
cally synthesized using the aqueous extract of flower of Cassia fistula showed polydisperse
nanoparticles with average size between 21.00 and 30.00 nm [158]. Likewise, Kim et al.
reported the particle size distribution analysis by DLS, which comprised a 50–150 nm size
range and hydrodynamic diameter of 97 nm with an average size and shape of the nanopar-
ticles confirmed and paralleled the findings obtained from scanning electron microscopy
(STEM) analysis [159].

3.3. STEM Analysis of AgNPs-RR

Images of the surface size of the purified AgNPs-RR were examined using scanning
transmission electron microscopy (STEM). For the analysis, the purified sample was dis-
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persed by ultrasound in ethanol to form very dilute suspensions and then STEM images
of the drops deposited on the coated copper grids carbon were obtained. The AgNPs-RR
purified exhibited a quasi-spherical shape and showed aggregation and polydispersity
(Figure 3A,B). The size distribution was analyzed using the software ImageJ. The nanopar-
ticles presented a size distribution of 6.64–51.00 nm and an average diameter of 31.45 nm
(Figure 3C). This result is similar and is in agreement with the analysis proposed by Jha
et al., who reported that the biologically synthesized nanoparticles were spherical and
their size ranged between 2 and 50 nm [160]. The average size of the AgNPs-RR analyzed
by STEM was smaller than that analyzed by DLS (31.45 nm vs. 48.11 nm). STEM is a
direct method of particle size analysis while DLS is an indirect method [154–156]. Differ-
ences in methods of analysis from the STEM samples which were evaluated from a dry
non-hydrated state that are individually isolated, and the measurement obtained was the
surface size of the nanoparticles; on the other hand, DLS evaluates the hydrodynamic size
in suspension accounting for an increase in small mean particle size difference between
characterization methodology.
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3.4. Cell Toxicity of AgNPs-RR in L929, A549, and MC-F7 Cell Lines

Previous reports suggested that green synthesized AgNPs have greater capacity to
suppress cancerous cell growth and have potential for further anti-cancer development
as a nanotherapeutic [161–164]. In this work, we examined the cytotoxicity of AgNPs
and AgNPs-RR through MTT assay and we observed that the percentage of cell viability
decreased dose-dependently with increasing concentration of AgNPs and AgNPs-RR (Fig-
ure 4), and the IC50 value was observed at 12.50 µg/mL for the A549 and MCF7 cell lines.
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The AgNPs-RR had no apparent cytotoxic to the L929 cell line. Similar dose-dependent
responses of AgNPs were reported in a HCT15 cell line with a green synthesis of Vitex
negundo [161], in SiHa (human hyper-triploid cervical carcinoma cell line) with green
synthesis of Withania coagulans [147] and in human cervical carcinoma cells with green
synthesis of Podophyllum hexandrum [165]. Among various species of ferns, Thelypteris
torresiana produces protoapigenone that exhibits significant antitumor activity against lung
cancer cells (A549) [61], liver cancer cells (Hep G2 and Hep 3B) [58], and breast cancer cells
(MCF-7 [62] and MDA-MB-231) [61] with IC50 values ranging from 0.23 to 3.88 µM [10].
Chang et al. showed that this novel flavone decreased cancer cells viability through the
induction of apoptosis [65]. Furthermore, protoapigenone exhibited significant anti-cancer
activity in a nude mouse inoculated with human ovarian and prostate cancer cells [65–67].
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In our research, we observed the IC50 at 12.50 µg/mL in the same cellular strains used by
Chen et al. [65], Chang et al. [66], and Lin et al. [67]. However, previous studies assessed
the activity of protoapigenone extracted from Thelypteris torresiana, while we worked with
a full aqueous extract of Raqui-Raqui. Ultimately, in vivo detoxification of nanoparticles
from a patient’s body is critical for safe and effective nano-based therapy [120]. Filtration
and total body clearance of AgNPs from the systemic circulation of cancer patients treated
with metallic nanoparticles needs further investigation to minimize cell cytotoxicity as
outlined previously [165].

4. Conclusions

A preliminary study of the potential eco-friendly, cost-effective, and convenient green
synthesis of novel silver nanoparticles using an aqueous extract of Thelypteris glandu-
losolanosa (Raqui-Raqui) leaves was undertaken. The AgNPs-RR exhibited properties to
reduce AgNO3 solution, an average size of 39.16 nm using DLS analysis and 31.45 nm using
STEM analysis. Synthesized AgNPs demonstrated cytotoxicity against cancer cells (A549
and MCF7) and were not cytotoxic in non-cancerous cells. Additional physicochemical
characterization studies to further elucidate the particles and follow up biological studies
to understand the mechanisms of action of AgNPs-RR and their potential applications and
development as delivery systems in vivo are required.
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