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Abstract: Pollution generated by the misuse of large amounts of fruit and vegetable waste has
become a major environmental and social problem for developing countries due to the absence of
specialized collection centers for this type of waste. This research aims to generate electricity in an
eco-friendly way using red dragon fruit (pitahaya) waste as the fuel in single-chamber microbial
fuel cells on a laboratory scale using zinc and copper electrodes. It was possible to generate voltage
and current peaks of 0.46 ± 0.03 V and 2.86 ± 0.07 mA, respectively, with an optimum operating
pH of 4.22 ± 0.09 and an electrical conductivity of 175.86 ± 4.72 mS/cm at 8 ◦Brix until the tenth
day of monitoring. An internal resistance of 75.58 ± 5.89 Ω was also calculated with a maximum
power density of 304.33 ± 16.51 mW/cm2 at a current density of 5.06 A/cm2, while the FTIR spectra
showed a decrease in the initial compounds and endings, especially at the 3331 cm−1 peaks of the
O–H bonds. Finally, the yeast-like fungus Geotrichum candidum was molecularly identified (99.59%).
This research will provide great opportunities for the generation of renewable energy using biomass
as fuel through electronic devices with great potential to generate electricity.

Keywords: dragon fruit; fruit waste; microbial fuel cells; generation; bioelectricity

1. Introduction

Agricultural waste has generated large amounts of biomass due to the increase in
the world population, which could cause serious environmental problems if not handled
properly. It has been reported that approximately 140 Gt of waste is produced annually,
most of which is not used [1,2]. One of the countries that has experienced this pollution
the most is China, where waste expels approximately 11% of greenhouse gases into the
environment. However, some countries, including the United States, Finland, Germany, the
Netherlands, China, Korea, Japan, and South Africa, have begun to develop technologies to
generate products with different residues from the cultivation processes of their respective
countries [3–5]. Agro-industrial companies generate thousands of jobs around the world,
from planting to harvesting and selling their products, becoming an economic engine for
countries. In the production of fruits and/or vegetables, it has been shown that large
amounts of waste are also generated because there are fruits that do not reach the final part
of the sale process in good condition, generating large amounts of losses for companies.
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Thus, by not having a specific process for the reuse of waste to generate a new product,
companies cannot benefit [6]. According to the United Nations Organization, approximately
1.6 billion tons of organic waste is generated annually, of which 40 to 50% is food waste
belonging to the human diet, whose collection varies depending on the country and its
policies. However, in general, among the most commonly used methods are organic waste
treatment plants, the suspension of biological pollutants, and the separation at origin for
drop-off collection, but, at the same time, these systems are very expensive and necessary [7].
Several years ago, agro-industrial residues were seen as a problem in the food production
chain due to disposal costs, and the residues were mostly used as composts or for the
production of animal feed, but this has evolved significantly due to the emergence of new
techniques and the help of technology, giving agro-industrial residues an added value and
making them a sustainable and friendly resource for the environment [8,9]. When organic
agro-industrial residues are used in bioconversion processes, not only is the amount of
polluting organic matter in the environment reduced, but an added value is also given
to these residues by using them as inputs for the production of electricity. On the other
hand, the transition to a low-carbon economy is being facilitated by reducing the amount
of carbon burned to produce energy, which contributes to the reduction of the carbon
footprint [10,11].

In this sense, the technology of microbial fuel cells (MFCs), developed for the first
time in the 1960s, has begun to take center stage because this technology allows for the
use of different types of waste as fuel to generate bioelectricity [12]. Due to their great
potential, microbial fuel cells have a large number of designs, but in general, they consist
of two chambers (anodic and cathodic), which are almost always separated by a proton
exchange membrane, and inside each chamber, electrodes are connected on the outside
by an electrical circuit [13,14]. The generation of electric current originates because of
oxidation/reduction reactions that occur within the anodic and cathodic chambers, where
protons and electrons are released by microorganisms. The protons travel through the
proton exchange membrane, while the electrons are captured by the anodic electrode, and
through the external circuit, they travel to the cathode, generating a flow of electrons and
electric current [15]. One of the most widely used microbial fuel cells is the one with
a single chamber that, due to its versatility, offers several advantages [16]. According
to the literature, in several investigations, single-chamber microbial fuel cells have been
shown to generate higher power densities and reduce the internal resistance due to the
direct contact of the cathode electrode with air (O2), as well as reduce the costs for the
manufacture of microbial fuel cells (MFCs) because they do not require a constant flow of
air in the cathode chamber [17]. This type of design was carried out due to the need to
aerate the cathode when oxygen is used as the final electron acceptor; in some works, they
do not use the proton exchange membranes, but they do use a porous cathode because
they take advantage of the atmospheric oxygen to allow for the protons to diffuse through
them [18,19].

On the other hand, the pitahaya (Selenicereus undatus), or “Dragon Fruit”, has increased
its production and export due to the fact that the importing countries of this fruit, such
as the United States, Canada, Japan, and the European Union, have managed to consume
approximately 17,000 tons in 2018. The growth in demand for the fruit is mainly due to its
components, which include glucose, betalains, vitamins, organic acids, soluble dietary fiber,
phytoalbumins, and constituent minerals [20]. It has been reported that in 100 g of this fruit,
there is water (87 g), protein (1.1 g), fat (0.4 g), fiber (3 g), carbohydrates (11 g), iron (1.9 mg),
vitamin B1 (0.04 mg), vitamin B2 (0.05 mg), vitamin B3 (0.16 mg), vitamin C (20.5 mg),
calcium (8.5 mg), and phosphorus (22.5 mg), which have appropriate properties for medical
and diuretic uses for the benefit of people [21,22]. The increase in the consumption of this
fruit has generated an increase in waste products, creating a great problem for farmers and
companies dedicated to the export and import of the fruit [23,24]. The use of organic waste,
mainly fruit and vegetable waste, as fuel creates a great opportunity for governments and
companies to reuse their own waste, even more so if this technology can be scaled for large
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quantities. For this, it is necessary to parameterize the chemical, physical, and biological
values for optimal operation. Some encouraging reports have been found in the literature
on other types of fruits; for example, Din et al. (2020) used potato waste as fuel in their
single-chamber MFCs, generating a maximum peak voltage and an electrical current of
1.12 V and 12.45 mA, respectively, at a pH of 7 [25]. In the same way, banana waste has
been used as fuel in single-chamber MFCs with zinc and copper electrodes, managing to
generate peak voltages and currents of 1.01 ± 0.02 V and 3.72 ± 0.05 mA, respectively,
while operating at a pH of 4.02 ± 0.06. Likewise, the maximum power density value of
5736.11 ± 12.62 mW/cm2 [26] was achieved. Similarly, Tremouli et al. (2019) managed
to generate voltage peaks of 0.4 V at a pH of around 8 using fermentable domestic waste
extracts as fuel in single-chamber MFCs, concluding that metal electrodes generate better
electrical conductivity, which would produce voltage values and currents greater than
those obtained with carbon or graphite electrodes [27]. In the reviewed literature, it is
observed that the various microorganisms present on the electrodes play an important role
in the generation of electric current; however, they all depend on the pH of the medium
used for their operation in the MFCs [28,29].

Microorganisms are ubiquitous in nature and play an important role in the recycling of
organic waste from different industries due to their ability to exchange electrons, which is
a property exploited by MFCs [30]. The presence of these microorganisms in the substrates
of MFCs is an important factor in generating electricity because it transforms the chemical
energy contained in organic matter into electric current [31]. In recent years, new species
that can generate an electric current in MFCs have been reported; however, few strains can
generate power densities as high as those generated by mixed communities [32]. Typically,
in MFCs, electrons travel from the anode to the cathode through a closed circuit, combining
with protons to finally be captured by an electron acceptor (usually oxygen) and produce
reduced compounds. These electrons are obtained when electrically active microorganisms
carry out oxidation processes on organic matter [33,34]. The microorganisms that transfer
electrons to solid anodes are also called exoelectrogens, and the microorganisms that accept
electrons are called electrophytes [35]. The microorganisms grow within a matrix of poly-
meric substances, forming biofilms and settling on the anodes, where bioelectrochemical
reactions occur [36]. The reason for using organic waste is to maintain a sustainable cycle
where the waste is used as a fuel source to generate bioelectricity and, after the process,
the supernatant can be used for other functions, such as compost or fertilizer, through
composting or another method [37].

The lack of knowledge on the use of red dragon fruit waste as a fuel source and the
ignorance of its electrochemical potential motivate us to obtain the first results on its use
in the generation of electricity. The main objective of this research is to generate electrical
energy using pitahaya (red dragon) residues as fuel in laboratory-scale single-chamber
microbial fuel cells using zinc and copper as the electrodes. The pH values, electrical
conductivity, Brix degrees, voltage, and electrical current were monitored for a period of
30 days. Additionally, the internal resistance, current density, and power density of the
microbial fuel cells were measured. The values of the initial and final FTIR transmission
spectra were also reported, as well as the identification of the microorganisms attached to
the anodic biofilm at the molecular level. This research presents a novel way of generating
electrical energy and observing the optimal operating parameters of this type of microbial
fuel cell so that, in the near future, it can be scaled successfully, becoming a sustainable and
usable technology for society.

2. Materials and Methods
2.1. Fabrication of Single-Chamber Microbial Fuel Cells (scMFC)

The MFCs were acquired from the manufacturer, SAIDKOCC (SAIDKOCC-10091720;
Fujian, China). The anodic (copper—Cu; area 50 cm2) and cathodic (zinc—Zn; area 50 cm2)
electrodes were placed on the inside and outside (one side of the electrode is in contact with
the environment) of the MFCs, respectively. The electrodes were joined by a 6.0 mm copper
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wire on the outside, forming an external circuit. The anodic and cathodic chambers were
separated by a proton exchange membrane (Nafion 117; Wilmington, DE, USA), which
was attached to the cathode electrode (Figure 1). The microbial fuel cells were fabricated
in triplicate.
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Figure 1. Experimental setup of MFC.

2.2. Obtaining and Processing the Red Dragon Fruit Waste

A total of 3.2 Kg of pitahaya waste was collected from the La Hermelinda Market
(Trujillo, Peru). To remove any impurities (dust, insects, etc.), the pitahaya waste was
washed four times with distilled water. Then, it was dried at room temperature (21 ± 2 ◦C)
for 24 h. The juice (800 mL) of the pitahaya waste was obtained by an extractor (LDO-B-10;
Labtron, Camberley, UK). The obtained juice was separated and poured into sterilized
tanks, where it was kept until use.

2.3. Characterization of Microbial Fuel Cells

The physical parameters (voltage and electrical current) were measured by a multi-
meter (Prasek Premium PR-85). Moreover, the electrical conductivity was obtained using
a CD-4301 conductivity meter. The power density (PD) and current density (CD) were
calculated according to Segundo et al. (2022) [38], where DP = IV/A and DC = I/A, where
I is the electric current, V is the voltage, and A is the area of the electrode. Additionally, the
following external resistances were used: 1.3 ± 0.15, 5 ± 0.25, 10 ± 0.27, 20 ± 2, 50 ± 4.2,
100 ± 8.2, 220 ± 19, 500 ± 21.5, 800 ± 24.5, and 1000 ± 29 Ω. Finally, an energy sensor
(Vernier ±30 V and ±1000 mA) was used for the internal resistance (Rint) measurements
of the MFCs. On the other hand, the chemical parameters, such as the pH and degrees
Brix (◦Brix), were measured using a 110 series Oakton pH meter and an RHB-32 Brix
refractometer, and all of the measurements were evaluated for thirty days.

2.4. Isolation of Microorganisms from the Anode

Nutritive, McConkey, and Sabouraud agar were employed to isolate the possible
electrogenic microorganisms. A swabbing of the anode surface (with microbial growth)
was performed. Then, streaking in the culture medium was performed. The culture
medium for the isolation of the bacteria was incubated at 35 ◦C for 24 h. Meanwhile,
for the isolation of the fungi, the culture medium was incubated at 30 ◦C for 24 h. Pure
cultures were performed and stored for each microorganism colony until use, and Gram
and lactophenol stains were used to observe the microscopic characteristics.
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2.5. Molecular Identification

The molecular identification was performed at the Laboratory of Integral Solutions
Limited Liability Company (Peru). The CTAB method was performed for the DNA extrac-
tion and amplification using the PCR technique. The amplified fragments were sent for
sequencing using the Sanger method. Next, the MEGA X program and BLAST software
(https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 21 March 2023) were used to analyze
the sequences. Finally, the identification of the microorganisms was possible using the
percentage of identification in BLAST.

3. Results and Analysis

In Figure 2a, the voltage values obtained in the 30-day monitoring period of the MFCs
show that they managed to generate the maximum voltage peaks of 0.46 ± 0.03 V on the
tenth day, but their values kept decreasing until the last day of monitoring (0.25 ± 0.02 V).
Increases (in the first weeks) and decreases (in the last weeks) in the voltage values have
been reported in other investigations, attributing the increase in the values to the process
of conditioning and proliferation of the microorganisms due to the high carbon content
present in the waste, while the decreasing voltage values are attributed to the decrease
in organic matter because the same matter is consumed by the microorganisms in the
process of their metabolism [39–41]. Likewise, Figure 2b shows the electric current values
during the monitoring days. As it can be seen, the values increase from the first day
(2.13 ± 0.003 mA) to the tenth (2.86 ± 0.07 mA) and then slowly decay until the last day
(2.05 ± 0.08 mA). The values obtained are higher than those shown by other researchers;
for example, in their single-chamber MFCs, Yoshimura et al. (2018) managed to generate
peaks of approximately 0.05, 0.15, and 400 mV using mud, rice, and mixed waste (mud
and rice) as the substrates, respectively, attributing the increases in electric current to the
assimilation of low-molecular-weight compounds (sugars and amino acids) present in
the used waste [42]. In his research, Parkash A. (2018) managed to generate peaks of
approximately 350 mV and 1.2 mA in his MFCs using sludge enriched with blend cultures
of microorganisms, which worked at a pH of 7.8 [41]. On the other hand, Malik et al. (2021)
concluded that by using a carbon-rich source as fuel in MFCs, the electric current values
will increase. In their research, they managed to generate peaks of 6.47 mA and 0.647 V
using food waste from hotels, houses, and restaurants as the substrate [43]. Likewise, it
has also been found in the literature that metallic electrodes, such as Cu and Zn, have
a high electrical conductivity due to their inherent properties of the same material, thus
allowing the passage of electrons through the external circuit and generating higher voltage
values and electric currents. Thus, the presence of galvanic reactions during the process
of generating electric power is not ruled out since the presence of this reaction has been
observed in other fruit waste used as fuel in MFCs [28,29].
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In Figure 3a, the pH values obtained from the monitoring period are shown, where
it is observed that the values remain in the acidic and slightly neutral regimes, with an
optimum operating pH of 4.22 ± 0.09 on the tenth day. Javed et al. (2021) mention the
importance of pH in the generation of voltage in MFCs, considering a low or alkaline pH for
the anodic chambers because using vegetable waste obtained better results at a low pH [44].
Likewise, it has been investigated that in papaya waste operating in MFCs, the optimal
operating pH values are acidic, managing to generate voltage peaks of 1.1 V [45]. The
importance lies in the fact that microorganisms need an adequate pH for their metabolism
and growth, and for certain microorganisms reported in different investigations, the pH
varies, which is why many investigations mention that the optimal pH will vary depending
on the waste and type of MFC [46,47]. In Figure 3b, the electrical conductivity values of
the MFCs are shown, where it can be seen that the values increased from the first day
(117.29 ± 2.73 mS/cm) to the tenth day (175.86 ± 4.72 mS/cm) before decreasing until the
last day (58.36 ± 4.51 mS/cm). Variations in electrical conductivity of the MFC have been
reported by Stefanova et al. (2018) [48], who mention in their research that the variations are
due to increases and decreases in the internal resistance of the MFCs, which were directly
affected by the sedimentation process of the substrate used. Thus, it has also been shown
that adding inorganic salts to the compound can increase the electrical parameters [48,49].
While Figure 3c shows the values of the ◦Brix observed, which remained constant for the
first 3 days (14 ◦Brix) and then decreased, on day 7, where the voltage and electric current
values were at their maximum, 11 ◦Brix were observed in the substrates of the MFCs, but
on day 26, the values decreased to 0. It has been reported that fruits rich in galactose,
glucose, sucrose, and organic acids (such as ascorbic and citric acid) are one of the main
sources of energy that yeasts use for their growth [50,51]. These values serve to observe the
amount of dry material in the waste, in this case, specifically the number of sugars, which
were consumed by the microorganisms in the electricity generation process [52].
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In Figure 4a, the internal resistance (Rint.) of the fuel cells is shown, for which Ohm’s
Law (V = IR) was used, where the voltage values were placed on the “Y” axis and those
of the electric current on the “X” axis; in this way, the slope of the linear adjustment is
the internal resistance of the MFCs. The value of the calculated internal resistance was
75.58 ± 5.89 Ω; this value was calculated at the maximum peak of the voltage and electric
current generation (on the seventh day). These resistance values were low compared to
other investigations; for example, it has been reported that in MFCs with domestic water
waste, the reported resistance was 256.81 ± 3.4 Ω (for a 3 mm electrode), but it can decrease
by varying the thickness of the electrode [53]. Likewise, it has been reported that when
manufacturing a carbon electrode with metallic nanoparticles, the internal resistance values
decrease considerably. Ali et al. (2020) manufactured graphite electrodes with Fe nanopar-
ticles, achieving an internal resistance of 3.2 Ω [54]. On the other hand, Ullah et al. (2020)
used synthetic waste with different glucose percentages in their MFCs as the substrates,
obtaining an internal resistance of 301 Ω for the highest glucose concentration, which
reported the lowest Rint. [55]. According to the literature, metallic materials can help to
generate high values of voltage and current by their very nature in the initial stage, but
they play a role against them in the final stage due to the fact that the electrode used was
copper and this material has a toxic effect on bacteria, which could explain the decrease in
the values of the electrical parameters in the final stage [56,57].
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In Figure 4b, the power density (PD) values are shown as a function of the current
density (CD). The PD max. was 304.325 ± 16.51 mW/cm2 at 5.06 A/cm2 DC, with a peak
voltage of 387.27 ± 11.87 mV. The PD values shown are relatively higher than those shown
in other works; for example, Kebaili et al. (2021) managed to generate maximum PD peaks
of 0.180 W/cm2 in their single-chamber MFCs using leachate as the substrate [58]. Likewise,
the research carried out by Gautam et al. (2021) managed to generate 2400 ± 110 W/cm2 in
their MFCs using sewage sludge, compost leachate, and mess food waste and graphite rod
electrodes as the substrate [59]. The high values obtained in the investigation may be due
to the electrodes used, which, due to their metallic characteristics, have a high electrical
conductivity, facilitating the passage of electrons through the entire electrode area [60,61].

The initial and final FTIR transmittance spectra of the used substrate are shown in
Figure 5, where it can be seen that the most intense peak at 3331 cm−1 belongs to the
O–H bonds, while the peaks at 2969 and 2805 cm−1 belong to the alkane (C–H) bonds;
similarly, the 1686 cm−1 peak shows the presence of alkene compounds (C=C), and the
1496 and 968 cm−1 peaks show the presence of NO2 and C–H bonds [62–64]. In addition, a
decrease in the observed transmittance peaks is observed, which is due to the fact that the
compounds are consumed in the metabolism of the microorganisms present in the waste
during the processes of bioelectricity generation, fermentation, and degradation [65,66].
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Molecular identification was performed only for the anodic electrode because the
resulting cathodic electrode would be damaged due to corrosion caused by the reactions
that occurred within the MFCs for the generation of bioelectricity. Table 1 shows the
yeast that was identified using molecular biology. This was possible through ITS (internal
transcribed spacer) sequences [67]. In the BLAST analysis, Geotrichum candidum was
identified with 99.59% of the identity percentage. This species is considered a yeast-like
fungus or mold and can be isolated from plants, soil, fruits, etc. [68–70]. Only this species
was isolated from the anode, probably due to some factors, such as the antibacterial activity
of the anode (copper) and red dragon fruit (pitahaya) [71–73]. Another study showed
Saccharomyces cerevisiae (yeast) growth in an MFC with an anode based on copper [74].
Concerning the electron transferences to the anode, some fungi are known to require
electron mediators. However, there is evidence that some yeasts transmit electrons directly
to the anode via redox enzymes located in the membranes [75–79]. On the other hand,
a study reported the use of Geotrichum candidum and other species for the generation of
electricity in MFCs, generating voltage peaks between 182.5 and 192.5 V and currents
between 0.3 and 0.53 A, demonstrating that anaerobic microorganisms are capable of
producing electricity under suitable conditions [80].

Table 1. Species identified from the anode of the MFCs with red dragon fruit waste.

Organic Waste Identified Species bp Identity (%) Access Number Lineage

Pitahaya Geotrichum candidum 243 99.59 MK381259.1

cellular organisms; Eukaryota;
Opisthokonta; Fungi; Dikarya;
Ascomycota; saccharomyceta;

Saccharomycotina; Saccharomycetes;
Saccharomycetales; Dipodascaceae;

Geotrichum

In particular, there are some challenges. Only microorganisms that can grow on
agar-based media were considered in this investigation. However, in future research,
the involvement of other microbes that cannot grow in the culture media used must be
considered. On the other hand, the use of another type of MFC, such as MFC type H,
should also be considered.
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4. Conclusions

It was possible to successfully generate bioelectricity through microbial fuel cells
on a laboratory scale using dragon fruit waste as the fuel and zinc and copper as the
electrodes, managing to generate electrical current and voltage peaks of 2.86 ± 0.07 mA
and 0.46 ± 0.03 V, respectively, on the tenth day. The substrates used were operating
in an acid regime with an optimum pH of 4.22 ± 0.09, while their electrical conductiv-
ity was 175.86 ± 4.72 mS/cm and 8 ◦Brix. On the other hand, an internal resistance of
75.58 ± 5.89 Ω was calculated with a maximum power density of 304.33 ± 16.51 mW/cm2

at a current density of 5.06 A/cm2, while the FTIR spectrum showed a decrease in the final
spectrum with respect to the initial one due to the consumption of the components by parts
of the microorganisms present in the substrate. Likewise, it was possible to molecularly
identify the yeast-like fungus Geotrichum candidum with a 99.59% identity (ID: MK381259.1).

For future work, the incorporation of metallic nanoparticles into porous carbon elec-
trodes should be investigated to improve their electrical conductivity, including the type of
electrode material, which must be economical, have good conductivity, and not be toxic
to the electrogenic microorganisms. On the other hand, microbial biocatalysts should be
used on other types of fruit and vegetable waste to increase the effectiveness of the MFCs,
and the chemical-physical parameters (pH and temperature) should be standardized to
increase the generation of electrical current in the MFCs.
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