Examinando por Autor "Cabanillas-Chirinos, Luis"
Mostrando 1 - 11 de 11
- Resultados por página
- Opciones de ordenación
Publicación Acceso abierto Electric Current Generation by Increasing Sucrose in Papaya Waste in Microbial Fuel Cells(MDPI, 2022-08-15) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Benites, Santiago M.; Delfín-Narciso, Daniel; Angelats-Silva, Luis; Díaz , Felix; Cabanillas-Chirinos, Luis; Gallozzo Cardenas, Moises“The accelerated increase in energy consumption by human activity has generated an increase in the search for new energies that do not pollute the environment, due to this, microbial fuel cells are shown as a promising technology. The objective of this research was to observe the influence on the generation of bioelectricity of sucrose, with different percentages (0%, 5%, 10% and 20%), in papaya waste using microbial fuel cells (MFCs). It was possible to generate voltage and current peaks of 0.955 V and 5.079 mA for the cell with 20% sucrose, which operated at an optimal pH of 4.98 on day fifteen. In the same way, the internal resistance values of all the cells were influenced by the increase in sucrose, showing that the cell without sucrose was 0.1952 ± 0.00214 KΩ and with 20% it was 0.044306 ± 0.0014 KΩ. The maximum power density was 583.09 mW/cm2 at a current density of 407.13 A/cm2 and with a peak voltage of 910.94 mV, while phenolic compounds are the ones with the greatest presence in the FTIR (Fourier transform infrared spectroscopy) absorbance spectrum. We were able to molecularly identify the species Achromobacter xylosoxidans (99.32%), Acinetobacter bereziniae (99.93%) and Stenotrophomonas maltophilia (100%) present in the anode electrode of the MFCs. This research gives a novel use for sucrose to increase the energy values in a microbial fuel cell, improving the existing ones and generating a novel way of generating electricity that is friendly to the environment.“Publicación Acceso abierto Electric Current Generation by Increasing Sucrose in Papaya Waste in Microbial Fuel Cells(MDPI, 2022-08-15) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Benites, Santiago M.; Delfín-Narciso, Daniel; Angelats-Silva, Luis; Díaz, Felix; Cabanillas-Chirinos, Luis; Gallozzo Cardenas, Moises“The accelerated increase in energy consumption by human activity has generated an increase in the search for new energies that do not pollute the environment, due to this, microbial fuel cells are shown as a promising technology. The objective of this research was to observe the influence on the generation of bioelectricity of sucrose, with different percentages (0%, 5%, 10% and 20%), in papaya waste using microbial fuel cells (MFCs). It was possible to generate voltage and current peaks of 0.955 V and 5.079 mA for the cell with 20% sucrose, which operated at an optimal pH of 4.98 on day fifteen. In the same way, the internal resistance values of all the cells were influenced by the increase in sucrose, showing that the cell without sucrose was 0.1952 ± 0.00214 KΩ and with 20% it was 0.044306 ± 0.0014 KΩ. The maximum power density was 583.09 mW/cm2 at a current density of 407.13 A/cm2 and with a peak voltage of 910.94 mV, while phenolic compounds are the ones with the greatest presence in the FTIR (Fourier transform infrared spectroscopy) absorbance spectrum. We were able to molecularly identify the species Achromobacter xylosoxidans (99.32%), Acinetobacter bereziniae (99.93%) and Stenotrophomonas maltophilia (100%) present in the anode electrode of the MFCs. This research gives a novel use for sucrose to increase the energy values in a microbial fuel cell, improving the existing ones and generating a novel way of generating electricity that is friendly to the environment.“Publicación Acceso abierto “Generation of Electricity Through Papaya Waste at Different pH “(Kauno Technologijos Universitetas, 2022-10) Rojas-Flores, Segundo; De La Cruz–Noriega, Magaly; Benites, Santiago M.; Delfín-Narciso, Daniel; Angelats-Silva, Luis; Díaz, Felix; Cabanillas-Chirinos, Luis“A large amount of fruit waste is being a great environmental and social problem due to a lack of adequate storage. Among the most abundant waste is papaya, due to its high consumption in various varieties. These wastes can generate bioelectricity through organic waste, being an important parameter the pH. In this research, lowcost laboratory-scale microbial fuel cells were fabricated, using papaya waste as fuel at different pH (4, 5.73, 7, and 9) to obtain the optimum operating pH. It was possible to observe the maximum values of electric current and voltage of 17.97 mA and 1.02 V on days 16 and 14, in the cell with pH 7; while the cell with pH was the one that showed the lowest values. The electrical conductivity values increased from the first day, observing a maximum peak of 172.50 mS/cm for the cell with pH 7. However, the internal resistance values were low, the maximum value being for the cell with pH 4 (234.61 ± 34 Ω) and the minimum for the cell with pH 7 (46.543 ± 3.6 Ω). In the same way, the maximum power density was for the cell with pH 7 of approximately 645.74 ± 33.64 mW/cm2 and a current density of 5.42 A/cm2 . “Publicación Acceso abierto Green Energy Generated in Single-Chamber Microbial Fuel Cells Using Tomato Waste(Multidisciplinary Digital Publishing Institute (MDPI), 2023-07-03) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirinos, Luis; Benites, Santiago M.; Nazario-Naveda, Renny; Delfín-Narciso, Daniel; Gallozzo-Cardenas, Moisés; Diaz, Félix; Murga-Torres, Emzon; Rojas-Villacorta, Walter“This research used tomato waste as a substrate (fuel) in Single Chamber-Microbial Fuel Cells (scMFC) on a small scale. The electrochemical properties were monitored, the functional groups of the substrate were analyzed by Fourier Transform Infrared Spectrophotometry (FTIR) and a microbiological analysis was performed on the electrodes in order to identify the microorganisms responsible for the electrochemical process. The results show voltage peaks and an electrical current of 3.647 ± 0.157 mA and 0.957 ± 0.246 V. A pH of 5.32 ± 0.26 was measured in the substrate with an electrical current conductivity of 148,701 ± 5849 mS/cm and an internal resistance (Rint) of 77. 517 ± 8.541 Ω. The maximum power density (PD) displayed was 264.72 ± 3.54 mW/cm2 at a current density (CD) of 4.388 A/cm2 . On the other hand, the FTIR spectrum showed a more intense decrease in its peaks, with the compound belonging to the phenolic groups being the most affected at 3361 cm−1 . The micrographs show the formation of a porous biofilm where molecular identification allowed the identification of two bacteria (Proteus vulgaris and Proteus vulgaris) and a yeast (Yarrowia lipolytica) with 100% identity. The data found show the potential of this waste as a source of fuel for the generation of an electric current in a sustainable and environmentally friendly way, generating in the near future a mechanism for the reuse of waste in a beneficial way for farmers, communities and agro-industrial companies.“Publicación Acceso abierto Increase in Electrical Parameters Using Sucrose in Tomato Waste(MDPI, 2022-07-16) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Benites, Santiago M.; Delfín-Narciso, Daniel; Angelats-Silva, Luis; Felix, Díaz; Cabanillas-Chirinos, Luis“The use of organic waste as fuel for energy generation will reduce the great environmental problems currently caused by the consumption of fossil sources, giving agribusiness companies a profitable way to use their waste. In this research, tomato waste with different percentages of sucrose (0-target, 5, 10, and 20%) was used in microbial fuel cells manufactured on a laboratory scale with zinc and copper electrodes, managing to generate maximum peaks of voltage and a current of 1.08 V and 6.67 mA in the cell with 20% sucrose, in which it was observed that the optimum operating pH was 5.29, while the MFC with 0% (target) sucrose generated 0.91 V and 3.12 A on day 13 with a similar pH, even though all the cells worked in an acidic pH. Likewise, the cell with 20% sucrose had the lowest internal resistance (0.148541 ± 0.012361 KΩ) and the highest power density (224.77 mW/cm2 ) at a current density of 4.43 mA/cm2 , while the MFC with 0% sucrose generated 160.52 mW/cm2 and 4.38 mA/cm2 of power density and current density, respectively, with an internal resistance of 0.34116 ± 0.2914 KΩ. In this sense, the FTIR (Fourier-transform infrared spectroscopy) of all the substrates used showed a high content of phenolic compounds and carboxylate acids. Finally, the MFCs were connected in a series and managed to generate a voltage of 3.43 V, enough to light an LED (green). These results give great hope to companies and society that, in the near future, this technology can be taken to a larger scale.“Publicación Acceso abierto Increase in Electrical Parameters Using Sucrose in Tomato Waste(MDPI, 2022-07-16) Flores Segundo , Rojas; De La Cruz-Noriega, Magaly; Benites, Santiago M.; Delfín, Narciso Daniel; Silva, Luis Angelats; Díaz, Felix; Cabanillas-Chirinos, Luis; Silva-Palacios, FernandaThe use of organic waste as fuel for energy generation will reduce the great environmental problems currently caused by the consumption of fossil sources, giving agribusiness companies a profitable way to use their waste. In this research, tomato waste with different percentages of sucrose (0-target, 5, 10, and 20%) was used in microbial fuel cells manufactured on a laboratory scale with zinc and copper electrodes, managing to generate maximum peaks of voltage and a current of 1.08 V and 6.67 mA in the cell with 20% sucrose, in which it was observed that the optimum operating pH was 5.29, while the MFC with 0% (target) sucrose generated 0.91 V and 3.12 A on day 13 with a similar pH, even though all the cells worked in an acidic pH. Likewise, the cell with 20% sucrose had the lowest internal resistance (0.148541 ± 0.012361 KΩ) and the highest power density (224.77 mW/cm2) at a current density of 4.43 mA/cm2, while the MFC with 0% sucrose generated 160.52 mW/cm2 and 4.38 mA/cm2 of power density and current density, respectively, with an internal resistance of 0.34116 ± 0.2914 KΩ. In this sense, the FTIR (Fourier-transform infrared spectroscopy) of all the substrates used showed a high content of phenolic compounds and carboxylate acids. Finally, the MFCs were connected in a series and managed to generate a voltage of 3.43 V, enough to light an LED (green). These results give great hope to companies and society that, in the near future, this technology can be taken to a larger scale. View Full-TextPublicación Acceso abierto Potential Use of Coriander Waste as Fuel for the Generation of Electric Power(MDPI, 2023-01-04) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirinos, Luis; Nazario-Naveda, Renny; Gallozzo-Cardenas, Moisés; Diaz, Félix; Murga-Torres, Emzon“The increase in the population and its need to produce food has caused the level of contamination by organic waste to increase exponentially in recent years. Innovative methods have been proposed for the use of this waste and thus to mitigate its impact. One of these is to use it as fuel in microbial fuel cells to generate electricity. This research aims to generate bioelectricity using coriander waste in microbial fuel cells. The maximum voltage and current observed were 0.882 ± 0.154 V and 2.287 ± 0.072 mA on the seventh and tenth day, respectively, these values were obtained working at an optimum operating pH of 3.9 ± 0.16 and with an electrical conductivity of 160.42 ± 4.54 mS/cm. The internal resistance observed in the cells was 75.581 ± 5.892 Ω, with a power density of 304.325 ± 16.51 mW/cm2 at 5.06 A/cm2 current density. While the intensity of the final FTIR (Fourier transform infrared spectroscopy) spectrum peaks decreased compared to the initial one, likewise, with a percentage of identity, it was possible to attribute 98.97, 99.39, and 100% to the species Alcaligenes faecalis, Alcaligenes faecali, and Pseudomonas aeruginosa. Finally, the cells were connected in series, managing to turn on an LED light (red) with the 2.61 V generated. This research provides an innovative and environmentally friendly way that companies and farmers can use to reuse their waste“Publicación Acceso abierto Use of Kiwi Waste as Fuel in MFC and Its Potential for Use as Renewable Energy(MDPI, 2023-04-12) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirinos, Luis; Benites, Santiago M.; Nazario-Naveda, Renny; Delfín-Narciso, Daniel; Gallozzo-Cardemas, Moisés; Murga-Torres, Emzon; Rojas-Villacorta, Walter; Díaz, FelixThis research aimed to use kiwi waste as fuel to generate bioelectricity through microbial fuel cells. It was possible to generate an electrical current and voltage peaks of 3.807 ± 0.102 mA and 0.993 ± 0.061 V on day 11, showing an electrical conductivity of 189.82 ± 3.029 mS/cm and an optimum operating pH of 5.966 ± 0.121. The internal resistance of the cells was calculated using Ohm’s Law, resulting in a value of 14.957 ± 0.394 Ω, while the maximum power density was 212.68 ± 26.84 mW/m2 at a current density of 4.506 A/cm2. Through the analysis of the FTIR spectra carried out on the substrate, a decrease in the characteristic organic peaks was observed due to their decomposition during the electricity-generation process. In addition, it was possible to molecularly identify the bacteria Comamonas testosteroni, Sphingobacterium sp., and Stenotropho-monas maltophila adhered to the anodized biofilm. Finally, the capacity of this residue to generate bioelectricity was demonstrated by lighting an LED bulb with a voltage of 2.85 V.Publicación Acceso abierto Use of Kiwi Waste as Fuel in MFC and Its Potential for Use as Renewable Energy(MDPI, 2023-04-08) Rojas-Flores, Segundo; De La Cruz-Noriega, Magaly; Cabanillas-Chirinos, Luis; Benites, Santiago M.; Nazario-Naveda, Renny; Delfín-Narciso, Daniel; Gallozzo-Cardemas, Moisés; Díaz, Felix; Murga-Torres, Emzon; Rojas-Villacorta, WalterThis research aimed to use kiwi waste as fuel to generate bioelectricity through microbial fuel cells. It was possible to generate an electrical current and voltage peaks of 3.807 ± 0.102 mA and 0.993 ± 0.061 V on day 11, showing an electrical conductivity of 189.82 ± 3.029 mS/cm and an optimum operating pH of 5.966 ± 0.121. The internal resistance of the cells was calculated using Ohm’s Law, resulting in a value of 14.957 ± 0.394 Ω, while the maximum power density was 212.68 ± 26.84 mW/m2 at a current density of 4.506 A/cm2. Through the analysis of the FTIR spectra carried out on the substrate, a decrease in the characteristic organic peaks was observed due to their decomposition during the electricity-generation process. In addition, it was possible to molecularly identify the bacteria Comamonas testosteroni, Sphingobacterium sp., and Stenotropho-monas maltophila adhered to the anodized biofilm. Finally, the capacity of this residue to generate bioelectricity was demonstrated by lighting an LED bulb with a voltage of 2.85 V.Publicación Acceso abierto “Use of Tangerine Waste as Fuel for the Generation of Electric Current“(MDPI, 2023-02-15) Ortiz-Saavedra, Brando; Cabanillas-Chirinos, Luis; Nazario-Naveda, Renny; Gallozzo-Cardenas, Moisés; Diaz, Félix; Delfin-Narciso, Daniel; Rojas-Villacorta, Walter“Fruit waste has increased exponentially worldwide, within which tangerine is one of those that generates a greater amount of organic waste, which is currently not fully used. On the other hand, microbial fuel cells (MFCs) are presented as an opportunity to take advantage of organic waste to generate electricity, which is why the main objective of this research is to generate bioelectricity using tangerine waste as a substrate in microbial fuel cells using zinc and copper electrodes. It was possible to generate current and voltage peaks of 1.43973 ± 0.05568 mA and 1.191 ± 0.035 V on days eighteen and seventeen, respectively, operating with an optimum pH of 4.78 ± 0.46 and with electrical conductivity of the substrate of 140.07 ± 3.51 mS/cm, while the Brix degrees gradually decreased until the last day. The internal resistance determined was 65.378 ± 1.967 Ω, while the maximum power density was 475.32 ± 24.56 mW/cm2 at a current density of 5.539 A/cm2 with a peak voltage of 1024.12 ± 25.16 mV. The bacterium (Serratia fonticola) and yeasts (Rhodotorula mucilaginosa) were identified in the substrate with an identity of 99.57 and 99.50%, respectively. Finally, the cells were connected in series, managing to generate 3.15 V, which allowed the turning on of a red LED light. “Publicación Acceso abierto “Use of Tangerine Waste as Fuel for the Generation of Electric Current“(MDPI, 2023-02-15) Rojas-Flores, Segundo; Cabanillas-Chirinos, Luis; Nazario-Naveda, Renny; Gallozzo-Cardenas, Moisés; Diaz, Félix; Delfin-Narciso, Daniel; Rojas-Villacorta, Walter“: Fruit waste has increased exponentially worldwide, within which tangerine is one of those that generates a greater amount of organic waste, which is currently not fully used. On the other hand, microbial fuel cells (MFCs) are presented as an opportunity to take advantage of organic waste to generate electricity, which is why the main objective of this research is to generate bioelectricity using tangerine waste as a substrate in microbial fuel cells using zinc and copper electrodes. It was possible to generate current and voltage peaks of 1.43973 ± 0.05568 mA and 1.191 ± 0.035 V on days eighteen and seventeen, respectively, operating with an optimum pH of 4.78 ± 0.46 and with electrical conductivity of the substrate of 140.07 ± 3.51 mS/cm, while the Brix degrees gradually decreased until the last day. The internal resistance determined was 65.378 ± 1.967 Ω, while the maximum power density was 475.32 ± 24.56 mW/cm2 at a current density of 5.539 A/cm2 with a peak voltage of 1024.12 ± 25.16 mV. The bacterium (Serratia fonticola) and yeasts (Rhodotorula mucilaginosa) were identified in the substrate with an identity of 99.57 and 99.50%, respectively. Finally, the cells were connected in series, managing to generate 3.15 V, which allowed the turning on of a red LED light.“
