• Español
  • English
Iniciar sesión
¿Nuevo Usuario? Registrarse ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Inicio
  • Comunidades
  • Navegar
  • Estadísticas y Analíticas
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Castro-Leon, Gloria"

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 4 de 4
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
    (Science and Information Organization, 2023) Iparraguirre-Villanueva, Orlando; Torres-Ceclén, Carmen; Epifanía-Huerta, Andrés; Castro-Leon, Gloria; Melgarejo-Graciano, Melquiades; Zapata-Paulini, Joselyn; Cabanillas-Carbonell, Michael
    “With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. “
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
    (Science and Information Organization, 2023) Iparraguirre-Villanueva, Orlando; Torres-Ceclén, Carmen; Epifanía-Huerta, Andrés; Castro-Leon, Gloria; Melgarejo-Graciano, Melquiades; Zapata-Paulini, Joselyn; Cabanillas-Carbonell, Michael
    “With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. “
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Disease Identification in Crop Plants based on Convolutional Neural Networks
    (Science and Information Organization, 2023) Iparraguirre-Villanueva, Orlando; Guevara-Ponce, Victor; Torres-Ceclén, Carmen; Ruiz-Alvarado, John; Castro-Leon, Gloria; Roque-Paredes, Ofelia; Zapata-Paulini, Joselyn; Cabanillas-Carbonell, Michael
    “The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets“
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    Disease Identification in Crop Plants based on Convolutional Neural Networks
    (Science and Information Organization, 2023) Iparraguirre-Villanueva, Orlando; Guevara-Ponce, Victor; Torres-Ceclén, Carmen; Ruiz-Alvarado, John; Castro-Leon, Gloria; Roque-Paredes, Ofelia; Zapata-Paulini, Joselyn; Cabanillas-Carbonell, Michael
    “The identification, classification and treatment of crop plant diseases are essential for agricultural production. Some of the most common diseases include root rot, powdery mildew, mosaic, leaf spot and fruit rot. Machine learning (ML) technology and convolutional neural networks (CNN) have proven to be very useful in this field. This work aims to identify and classify diseases in crop plants, from the data set obtained from Plant Village, with images of diseased plant leaves and their corresponding Tags, using CNN with transfer learning. For processing, the dataset composing of more than 87 thousand images, divided into 38 classes and 26 disease types, was used. Three CNN models (DenseNet-201, ResNet-50 and Inception-v3) were used to identify and classify the images. The results showed that the DenseNet-201 and Inception-v3 models achieved an accuracy of 98% in plant disease identification and classification, slightly higher than the ResNet-50 model, which achieved an accuracy of 97%, thus demonstrating an effective and promising approach, being able to learn relevant features from the images and classify them accurately. Overall, ML in conjunction with CNNs proved to be an effective tool for identifying and classifying diseases in crop plants. The CNN models used in this work are a very good choice for this type of tasks, since they proved to have a very high performance in classification tasks. In terms of accuracy, all three models are very accurate in image classification, with an accuracy of over 96% with large data sets“
Más sobre Wiener...
  • Admisión
  • Nosotros
  • Bolsa de trabajo
  • Posgrado
  • Portal para el estudiante
  • Contáctenos
  • Libro de Reclamaciones
  • Transparencia
  • Canal Ético
Carreras
  • Farmacia y Bioquímica
  • Tecnología Médica en Terapia Física y Rehabilitación
  • Tecnología Médica en Laboratorio Clínico y Anatomía Patológica
  • Psicología
  • Odontología
  • Obstetricia
  • Nutrición y Dietética
  • Medicina Humana
  • Enfermería
  • Arquitectura
  • Ingeniería Civil
  • Ingeniería de Sistemas e Informática
  • Ingeniería Industrial y de Gestión Empresarial
  • Derecho y Ciencia Política
  • Administración y Marketing
  • Contabilidad y Auditoría
  • Administración y Negocios Internacionales
  • Administración y Dirección de Empresas
  • Administración en Turismo y Hotelería
  • Comunicación en Medios Digitales
Centros Wiener
  • Centro de Análisis Clínicos
  • Centro Odontológico
  • Centro de Terapia Física y Rehabilitación
Servicios
  • Biblioteca
  • Responsabilidad Social
  • Registros Académicos
  • Secretaría General
  • Bienestar Estudiantil
  • Dirección de Empleabilidad y Alumni
  • Defensoría Universitaria
Novedades
  • Eventos
  • Noticias
  • Info Wiener
  • Boletín de Calidad
  • Wiener Guía del Estudiante Pregrado
  • Trabaja con Nosotros
Jr. Larraburre y Unanue 110 Lima
Av. Arequipa 440 Lima
Jr. Saco Oliveros 150 Lima
Av. Arenales 1555 Lince
Escríbenos:
administrador.repositorio@uwiener.edu.pe
Síguenos en:
Sistema DSPACE 7 - Metabiblioteca | logo