• Español
  • English
Iniciar sesión
¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Inicio
  • Comunidades
  • Navegar
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Epifanía-Huerta, Andrés"

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 4 de 4
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    “Breast Cancer Prediction using Machine Learning Models“
    (Science and Information Organization, 2023) Iparraguirre-Villanueva, Orlando; Epifanía-Huerta, Andrés; Torres-Ceclén, Carmen; Ruiz-Alvarado, John; Cabanillas-Carbonel, Michael
    Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important role in this area. Therefore, predicting breast cancer remains a very challenging issue for clinicians and researchers. This work aims to predict the probability of breast cancer in patients. Using machine learning (ML) models such as Multilayer Perceptron (MLP), K-Nearest Neightbot (KNN), AdaBoost (AB), Bagging, Gradient Boosting (GB), and Random Forest (RF). The breast cancer diagnostic medical dataset from the Wisconsin repository has been used. The dataset includes 569 observations and 32 features. Following the data analysis methodology, data cleaning, exploratory analysis, training, testing, and validation were performed. The performance of the models was evaluated with the parameters: classification accuracy, specificity, sensitivity, F1 count, and precision. The training and results indicate that the six trained models can provide optimal classification and prediction results. The RF, GB, and AB models achieved 100% accuracy, outperforming the other models. Therefore, the suggested models for breast cancer identification, classification, and prediction are RF, GB, and AB. Likewise, the Bagging, KNN, and MLP models achieved a performance of 99.56%, 95.82%, and 96.92%, respectively. Similarly, the last three models achieved an optimal yield close to 100%. Finally, the results show a clear advantage of the RF, GB, and AB models, as they achieve more accurate results in breast cancer prediction.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    “Breast Cancer Prediction using Machine Learning Models“
    (Science and Information Organization, 2023) Iparraguirre-Villanueva, Orlando; Epifanía-Huerta, Andrés; Torres-Ceclén, Carmen; Ruiz-Alvarado, John; Cabanillas-Carbonel, Michael
    Breast cancer is a type of cancer that develops in the cells of the breast. Treatment for breast cancer usually involves X-ray, chemotherapy, or a combination of both treatments. Detecting cancer at an early stage can save a person's life. Artificial intelligence (AI) plays a very important role in this area. Therefore, predicting breast cancer remains a very challenging issue for clinicians and researchers. This work aims to predict the probability of breast cancer in patients. Using machine learning (ML) models such as Multilayer Perceptron (MLP), K-Nearest Neightbot (KNN), AdaBoost (AB), Bagging, Gradient Boosting (GB), and Random Forest (RF). The breast cancer diagnostic medical dataset from the Wisconsin repository has been used. The dataset includes 569 observations and 32 features. Following the data analysis methodology, data cleaning, exploratory analysis, training, testing, and validation were performed. The performance of the models was evaluated with the parameters: classification accuracy, specificity, sensitivity, F1 count, and precision. The training and results indicate that the six trained models can provide optimal classification and prediction results. The RF, GB, and AB models achieved 100% accuracy, outperforming the other models. Therefore, the suggested models for breast cancer identification, classification, and prediction are RF, GB, and AB. Likewise, the Bagging, KNN, and MLP models achieved a performance of 99.56%, 95.82%, and 96.92%, respectively. Similarly, the last three models achieved an optimal yield close to 100%. Finally, the results show a clear advantage of the RF, GB, and AB models, as they achieve more accurate results in breast cancer prediction.
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
    (Science and Information Organization, 2023) Iparraguirre-Villanueva, Orlando; Torres-Ceclén, Carmen; Epifanía-Huerta, Andrés; Castro-Leon, Gloria; Melgarejo-Graciano, Melquiades; Zapata-Paulini, Joselyn; Cabanillas-Carbonell, Michael
    “With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. “
  • Cargando...
    Miniatura
    PublicaciónAcceso abierto
    “Comparison of Predictive Machine Learning Models to Predict the Level of Adaptability of Students in Online Education“
    (Science and Information Organization, 2023) Iparraguirre-Villanueva, Orlando; Torres-Ceclén, Carmen; Epifanía-Huerta, Andrés; Castro-Leon, Gloria; Melgarejo-Graciano, Melquiades; Zapata-Paulini, Joselyn; Cabanillas-Carbonell, Michael
    “With the onset of the COVID-19 pandemic, online education has become one of the most important options available to students around the world. Although online education has been widely accepted in recent years, the sudden shift from face-to-face education has resulted in several obstacles for students. This paper, aims to predict the level of adaptability that students have towards online education by using predictive machine learning (ML) models such as Random Forest (RF), KNearest-Neighbor (KNN), Support vector machine (SVM), Logistic Regression (LR) and XGBClassifier (XGB).The dataset used in this paper was obtained from Kaggle, which is composed of a population of 1205 high school to college students. Various stages in data analysis have been performed, including data understanding and cleaning, exploratory analysis, training, testing, and validation. Multiple parameters, such as accuracy, specificity, sensitivity, F1 count and precision, have been used to evaluate the performance of each model. The results have shown that all five models can provide optimal results in terms of prediction. For example, the RF and XGB models presented the best performance with an accuracy rate of 92%, outperforming the other models. In consequence, it is suggested to use these two models RF and XGB for prediction of students' adaptability level in online education due to their higher prediction efficiency. Also, KNN, SVM and LR models, achieved a performance of 85%, 76%, 67%, respectively. In conclusion, the results show that the RF and XGB models have a clear advantage in achieving higher prediction accuracy. These results are in line with other similar works that used ML techniques to predict adaptability levels. “
Más sobre Wiener...
  • Admisión
  • Nosotros
  • Bolsa de trabajo
  • Posgrado
  • Portal para el estudiante
  • Contáctenos
  • Libro de Reclamaciones
  • Transparencia
  • Canal Ético
Carreras
  • Farmacia y Bioquímica
  • Tecnología Médica en Terapia Física y Rehabilitación
  • Tecnología Médica en Laboratorio Clínico y Anatomía Patológica
  • Psicología
  • Odontología
  • Obstetricia
  • Nutrición y Dietética
  • Medicina Humana
  • Enfermería
  • Arquitectura
  • Ingeniería Civil
  • Ingeniería de Sistemas e Informática
  • Ingeniería Industrial y de Gestión Empresarial
  • Derecho y Ciencia Política
  • Administración y Marketing
  • Contabilidad y Auditoría
  • Administración y Negocios Internacionales
  • Administración y Dirección de Empresas
  • Administración en Turismo y Hotelería
  • Comunicación en Medios Digitales
Centros Wiener
  • Centro de Análisis Clínicos
  • Centro Odontológico
  • Centro de Terapia Física y Rehabilitación
Servicios
  • Biblioteca
  • Responsabilidad Social
  • Registros Académicos
  • Secretaría General
  • Bienestar Estudiantil
  • Dirección de Empleabilidad y Alumni
  • Defensoría Universitaria
Novedades
  • Eventos
  • Noticias
  • Info Wiener
  • Boletín de Calidad
  • Wiener Guía del Estudiante Pregrado
  • Trabaja con Nosotros
Jr. Larraburre y Unanue 110 Lima
Av. Arequipa 440 Lima
Jr. Saco Oliveros 150 Lima
Av. Arenales 1555 Lince
Escríbenos:
administrador.repositorio@uwiener.edu.pe
Síguenos en:
Sistema DSPACE 7 - Metabiblioteca | logo