Publicación:
Text prediction recurrent neural networks using long shortterm memory-dropout

dc.contributor.authorIparraguirre-Villanueva, Orlando
dc.contributor.authorGuevara-Ponce, Victor
dc.contributor.authorRuiz-Alvarado, Daniel
dc.contributor.authorBeltozarClemente, Saul
dc.contributor.authorSierra-Liñan, Fernando
dc.contributor.authorZapata-Paulini, Joselyn
dc.contributor.authorCabanillas-Carbonell, Michael
dc.date.accessioned2023-03-13T19:36:32Z
dc.date.available2023-03-13T19:36:32Z
dc.date.issued2022-10-29
dc.description.abstract“Unit short-term memory (LSTM) is a type of recurrent neural network (RNN) whose sequence-based models are being used in text generation and/or prediction tasks, question answering, and classification systems due to their ability to learn long-term dependencies. The present research integrates the LSTM network and dropout technique to generate a text from a corpus as input, a model is developed to find the best way to extract the words from the context. For training the model, the poem ““La Ciudad y los perros““ which is composed of 128,600 words is used as input data. The poem was divided into two data sets, 38.88% for training and the remaining 61.12% for testing the model. The proposed model was tested in two variants: word importance and context. The results were evaluated in terms of the semantic proximity of the generated text to the given context.“es_ES
dc.formatapplication/pdf
dc.identifier.doi10.11591/ijeecs.v29.i3.pp1758-1768es_ES
dc.identifier.urihttps://hdl.handle.net/20.500.13053/8063
dc.language.isoenges_ES
dc.publisherInstitute of Advanced Engineering and Sciencees_ES
dc.publisher.countryIDes_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject"Dropout Prediction Recurrent neural network Text Unit short-term memory"es_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.02.00
dc.titleText prediction recurrent neural networks using long shortterm memory-dropoutes_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
29711-60553-1-PB.pdf
Tamaño:
772.76 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones