Publicación:
“Search and classify topics in a corpus of text using the latent dirichlet allocation model“

dc.contributor.authorIparraguirre-Villanueva, Orlando
dc.contributor.authorSierra-Liñan, Fernando
dc.contributor.authorHerrera Salazar, Jose Luis
dc.contributor.authorBeltozar-Clemente, Saul
dc.contributor.authorPucuhuayla-Revatta, Félix
dc.contributor.authorZapata-Paulin, Joselyn
dc.contributor.authorCabanillas-Carbonell, Michael
dc.date.accessioned2023-03-16T16:48:29Z
dc.date.available2023-03-16T16:48:29Z
dc.date.issued2022-11-18
dc.description.abstract“This work aims at discovering topics in a text corpus and classifying the most relevant terms for each of the discovered topics. The process was performed in four steps: first, document extraction and data processing; second, labeling and training of the data; third, labeling of the unseen data; and fourth, evaluation of the model performance. For processing, a total of 10,322 ““curriculum““ documents related to data science were collected from the web during 2018-2022. The latent dirichlet allocation (LDA) model was used for the analysis and structure of the subjects. After processing, 12 themes were generated, which allowed ranking the most relevant terms to identify the skills of each of the candidates. This work concludes that candidates interested in data science must have skills in the following topics: first, they must be technical, they must have mastery of structured query language, mastery of programming languages such as R, Python, java, and data management, among other tools associated with the technology.“es_ES
dc.formatapplication/pdf
dc.identifier.doi10.11591/ijeecs.v30.i1.pp246-256es_ES
dc.identifier.urihttps://hdl.handle.net/20.500.13053/8119
dc.language.isoenges_ES
dc.publisherInstitute of Advanced Engineering and Sciencees_ES
dc.publisher.countryIDes_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject"Classify Discovering Latent dirichlet allocation Text corpus Topics"es_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.02.01
dc.title“Search and classify topics in a corpus of text using the latent dirichlet allocation model“es_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
30256-61127-1-PB.pdf
Tamaño:
631.14 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones